root/applications/bdmtoolbox/doc/local/001wrappers.dox @ 1409

Revision 1054, 4.3 kB (checked in by smidl, 15 years ago)

doc

Line 
1/*!
2\page bdt_wrappers Use Case #2: Matlab wrappers for BDM functions
3
4A wrapper is a mex file that does the following:
5 -# reads its arguments from Matlab structures and translates them into C++ structures
6 -# calls the corresponding function in C++,
7 -# converts the results into Matlab structures and passes them to the output
8 
9The use of these functions is inefficient, however, it is very usefull for:
10 - operations on parts of the experiment configurations for scenarios, see ...
11 - insight into the results, e.g. mean values of non-standard densities
12 - algorithms written in Matlab using these functions can be trivially re-written into C++
13 
14General notation of wrappers is: <b> \<class\>_\<function\>.m </b>
15
16For example, function \b epdf_mean.m  represents function \b mean  of class \b epdf  and any it its offsprings.
17
18For full list of available wrappers see content of directory /bdmtoolbox/mex
19
20\section bdt_wr_conv Convenience wrappers
21
22A useful wrapper is called \b class_defaults which takes the input matlab structure tries to copy it into BDM class and returns a structure how BDM interprets it.
23
24This is useful for:
25 - checking if the fields are correctly named: fields of input structure that are not in the output are not understood
26 - seeing what defaults the BDM assigns to fields that are optional
27 
28Example:
29\code
30>> CLS.class='RV'
31
32CLS =
33
34    class: 'RV'
35
36>> CLSout=class_defaults(CLS)
37
38CLSout =
39
40    class: 'RV'
41    names: {1x0 cell}
42    sizes: [1x0 double]
43    times: [1x0 double]
44\endcode
45
46The fields that are understood and accepted were filled.
47
48\code
49>> CLS.class='egauss'
50
51CLS =
52
53    class: 'egauss'
54
55>> CLSout=class_defaults(CLS)
56??? Unexpected Standard exception from MEX file.
57What() is:UIException: the compulsory Setting named
58"mu" is missing. Check path "".
59\endcode
60
61In this case, empty class of type 'egauss' is not allowed, the fields named "mu" is compulsory. The next step would be to add define CLS.mu.
62
63
64\section bdt_wrp_epdf Wrappers for pdfs
65
66The follwing wrappers are provided:
67 - \b epdf_mean returning mean value of any epdf function in <a href="annotated_bdm_epdf.html"> list </a>.
68 \code
69 >> G.class='egamma';
70 >> G.alpha = 3;
71 >> G.beta = 4;
72 >> epdf_mean(G)
73
74 ans =
75
76    0.7500
77 \endcode
78 - \b epdf_variance returning variance of any epdf function in <a href="annotated_bdm_epdf.html"> list </a>..
79 \code
80 >> epdf_variance(G)
81
82 ans =
83
84    0.1875
85 \endcode
86 - \b epdf_evallog_mat returns logarithm of the values in argument,
87 - \b epdf_sample_mat sample given number of independent samples for this density,
88 - \b epdf_marginal sample given number of independent samples for this density,
89 - \b epdf_condition sample given number of independent samples for this density,
90 - \b epdf_sample_mat sample given number of independent samples for this density,
91
92List of arguments of each function can be obtained by running the function with no argument:
93\code
94>> epdf_mean
95??? Error using ==> epdf_mean
96Usage:
97vec=pdf_mean(pdf_struct)
98  pdf_struct = struct('class','pdf_offspring',...);  %
99  description of pdf
100output:
101  vec mean value of given pdf.
102\endcode
103
104For up-to-date list of wrappers see files in <a href="files.html"> files.html</a>
105 
106 \section bdt_wrp_off Wrappers of offsprings
107 
108 When a new class defines its private function, its wrapper starts with the name of the class that defines it.
109 An example is function \b enorm_bhattacharyya.m  which id defined only for normal distributed densities (enorm\<sqmat\>)
110
111\section bdt_wrp_bm Wrappers for Bayesian Models (BMs)
112
113Wrappers for BM correspond to the main functions of BM, that is:
114 - \b bayes recursive update of posterior statistics by currently observed data and data in conditions, function \b bm_bayes
115 - \b bayesweighted recursive update of posterior statistics by currently observed data and data in conditions, when data are generated from this class only with probability w, function \b bm_bayesweighted
116 - \b epredictor returns unconditional predictor of the next data observation (if such density is available) \b bm_epredictor
117
118Example:
119\code
120>> CLS.class='multiBM'                % Estimator of multinomial density
121>> CLS.prior.beta = [1,2];            % Prior is Dirichlet with statistics beta
122
123>> CLSapost=bm_bayes(CLS, [0.5 0.5])  % update posterior, using data [0.5, 0.5]
124>> CLSapost.prior.beta
125
126ans =
127
128    1.5000    2.5000
129\endcode
130 */
Note: See TracBrowser for help on using the browser.