| 1 | /*! | 
|---|
| 2 | \page userguide_pdf BDM Use - Probability density functions | 
|---|
| 3 |  | 
|---|
| 4 | This section serves as an introduction to basic elements of the BDM: probability density functions, pdfs. | 
|---|
| 5 |  | 
|---|
| 6 | Table of content: | 
|---|
| 7 | - \ref ug_pdf_create | 
|---|
| 8 | - \ref ug_pdf_marg | 
|---|
| 9 | - \ref ug_pdf_cond | 
|---|
| 10 | - \ref ug_pdf_fnc | 
|---|
| 11 | - \ref ug_pdf_mex | 
|---|
| 12 |  | 
|---|
| 13 | \section ug_pdf_create Using built-in pdfs | 
|---|
| 14 |  | 
|---|
| 15 | In BDM toolbox, a pdf is specified by matlab structure, e.g. | 
|---|
| 16 | \code | 
|---|
| 17 | Nab.class= 'enorm<ldmat>'; | 
|---|
| 18 | Nab.mu   = [3,2]; | 
|---|
| 19 | Nab.R    = eye(2); | 
|---|
| 20 | Nab.rv   = RV({'a','b'}); | 
|---|
| 21 | \endcode | 
|---|
| 22 | Which encodes information \f$ f(a,b) = \mathcal{N}(mu=[3;2],R=eye(2))\f$. | 
|---|
| 23 | \li the keyword "enorm\<ldmat\>" means "Unconditional Normal distribution with covariance matrix in L'DL form", other possibilities are: | 
|---|
| 24 | "enorm\<chmat\>" for Choleski decomposition, and "enorm\<fsqmat\>" for full (non-decomposed) matrices. | 
|---|
| 25 | \li mu denotes mean value | 
|---|
| 26 | \li R denotes variance (written in full matrix regardles of the used decomposition), | 
|---|
| 27 | \li parameters mu and R are vector and matrix, respectively. They can be given directly (as in Nab.mu) or as a result of arbitrary matlab function, (as in Nab.R) | 
|---|
| 28 | \li rv denotes names assigned to the variables. RV is more complicated structure, but here it is sufficient to use default values. | 
|---|
| 29 | \li rv is an optional parameter, some operations do not need it, such as sampling or evaluation of moments | 
|---|
| 30 |  | 
|---|
| 31 | For generating samples try: | 
|---|
| 32 | \code | 
|---|
| 33 | >> M=epdf_sample_mat(Nab,4); | 
|---|
| 34 | \endcode | 
|---|
| 35 | which should return 4 samples of the Nab distribution. | 
|---|
| 36 |  | 
|---|
| 37 | For evaluation of mean and variance: | 
|---|
| 38 | \code | 
|---|
| 39 | >> Nab_m=epdf_mean(Nab); | 
|---|
| 40 | >> Nab_v=epdf_variance(Nab); | 
|---|
| 41 | \endcode | 
|---|
| 42 |  | 
|---|
| 43 | Other distributions are created analogously, see \ref bdm_doc/annotated_epdf.html | 
|---|
| 44 |  | 
|---|
| 45 | \section ug_pdf_marg Marginalization and conditioning | 
|---|
| 46 |  | 
|---|
| 47 | Basic operations on pdfs are marginalization and conditioning, which are provided by mex functions edpf_marginal and epdf_condition, respectively. | 
|---|
| 48 |  | 
|---|
| 49 | This operation does require the rv parametetr to be fully specified. If it isn't, it will fail with the following message | 
|---|
| 50 | \code | 
|---|
| 51 | --- fill in the message ---- | 
|---|
| 52 | \endcode | 
|---|
| 53 |  | 
|---|
| 54 | If rv is correctly specified, marginal pdf of Nab on variable "a" is obtained by: | 
|---|
| 55 | \code | 
|---|
| 56 | Na = epdf_marginal(Nab,RV('a')); | 
|---|
| 57 | \endcode | 
|---|
| 58 |  | 
|---|
| 59 | Similarly for conditional: | 
|---|
| 60 | \code | 
|---|
| 61 | Na_b = epdf_condition(Nab,RV('a')); | 
|---|
| 62 | Nb_a = epdf_condition(Nab,RV('b')); | 
|---|
| 63 | \endcode | 
|---|
| 64 |  | 
|---|
| 65 | \section ug_pdf_cond Conditioned densities | 
|---|
| 66 | Note that the result of conditioning is of type "mlnorm\<ldmat\>" which is a special case of pdf with variables in condition, specifically | 
|---|
| 67 | \f[ f(a|b) = \mathcal{N}(A*b+const, R)\f] | 
|---|
| 68 | i.e. "Normal distributed pdf with mean value as linear function of variable b". | 
|---|
| 69 |  | 
|---|
| 70 | This type of pdfs differ from previously used type is the way of use. For example, it is not possible to sample directly form such density, | 
|---|
| 71 | it is necessary to specify what is the value of variable in condition. | 
|---|
| 72 |  | 
|---|
| 73 | That is why a different function is used: | 
|---|
| 74 | \code | 
|---|
| 75 | Smp=pdf_samplecond_mat(Na_b, 10) | 
|---|
| 76 | \endcode | 
|---|
| 77 |  | 
|---|
| 78 | The conditioned and Unconditioned pdf may be combined together in the chain rule. The chain rule can be of two different types: conditioned or unconditioned, i.e.: | 
|---|
| 79 | \f[ f(a,b)=f(a|b)f(b), OR, f(a,b|c)=f(a|b)f(b|c)\f] | 
|---|
| 80 | Thus it is differently encoded as: | 
|---|
| 81 | \code | 
|---|
| 82 | fab.class = 'eprod';         % result is unconditioned pdf | 
|---|
| 83 | fab.pdfs  = {fa_b, fb}; | 
|---|
| 84 |  | 
|---|
| 85 | fab_c.class = 'mprod';       % result is conditioned pdf | 
|---|
| 86 | fab_c.pdfs  = {fa_b, fb_c}; | 
|---|
| 87 | \endcode | 
|---|
| 88 |  | 
|---|
| 89 | \section ug_pdf_fnc Pdfs with functional transformation | 
|---|
| 90 |  | 
|---|
| 91 | In more general type of pdfs, variables in condition may be transformed by a function. | 
|---|
| 92 | For example Gaussian density with nonlinear transformation of mean value, \f$ f(x|y) = \mathcal{N}(g(y), R)\f$, is represented by class \c mgnorm | 
|---|
| 93 |  | 
|---|
| 94 | \code | 
|---|
| 95 | fx.class  = 'mgnorm<ldmat>'; | 
|---|
| 96 | fx.g      = 'mexFunction';              % function is evaluated in matlab | 
|---|
| 97 | fx.g.function = 'test_function';         % name of the matlab function to evaluate | 
|---|
| 98 | fx.g.dim  = 2;                          % expected dimension of output | 
|---|
| 99 | fx.g.dimc = 2;                          % expected dimension of input | 
|---|
| 100 | fx.R      = eye(2);                     % variance R | 
|---|
| 101 | \endcode | 
|---|
| 102 |  | 
|---|
| 103 | This example is using generic function specified by name of Matlab .m file. | 
|---|
| 104 | Compulsory fields \c g.dim and \c g.dimc are used to check correct dimension of inputs and outputs of the function. | 
|---|
| 105 |  | 
|---|
| 106 | List of functions is in \ref bdm_doc/annotated_fnc | 
|---|
| 107 |  | 
|---|
| 108 | \section ug_pdf_mex Using Matlab classes of pdfs | 
|---|
| 109 |  | 
|---|
| 110 | Access to Matlab defined classe of pdfs is provided via structure: | 
|---|
| 111 | \code | 
|---|
| 112 | class = 'mexEpdf'; | 
|---|
| 113 | object = any_object_of_mexEpdf; | 
|---|
| 114 | \endcode | 
|---|
| 115 | where object can be created by any offspring of mexEpdf. | 
|---|
| 116 |  | 
|---|
| 117 | See \ref mex_bdm, and files: mex/mex_classes/mexEpdf.m | 
|---|
| 118 |  | 
|---|
| 119 | If you wish to write your own Matlab classes see \ref ug_dev_mat. | 
|---|
| 120 |  | 
|---|
| 121 | For list of all available pdf objects, see \ref annotated_epdf.html , \ref annotated_pdf.html and \ref annotated.html | 
|---|
| 122 | */ | 
|---|