root/applications/bdmtoolbox/doc/local/01userguide_pdf.dox @ 1088

Revision 1054, 4.9 kB (checked in by smidl, 14 years ago)

doc

Line 
1/*!
2\page userguide_pdf BDM Use - Probability density functions
3
4This section serves as an introduction to basic elements of the BDM: probability density functions, pdfs.
5
6Table of content:
7 - \ref ug_pdf_create
8 - \ref ug_pdf_marg
9 - \ref ug_pdf_cond
10 - \ref ug_pdf_fnc
11 - \ref ug_pdf_mex
12
13\section ug_pdf_create Using built-in pdfs
14
15In BDM toolbox, a pdf is specified by matlab structure, e.g.
16\code
17Nab.class= 'enorm<ldmat>';
18Nab.mu   = [3,2];
19Nab.R    = eye(2);
20Nab.rv   = RV({'a','b'});
21\endcode
22Which encodes information \f$ f(a,b) = \mathcal{N}(mu=[3;2],R=eye(2))\f$.
23\li the keyword "enorm\<ldmat\>" means "Unconditional Normal distribution with covariance matrix in L'DL form", other possibilities are:
24"enorm\<chmat\>" for Choleski decomposition, and "enorm\<fsqmat\>" for full (non-decomposed) matrices.
25\li mu denotes mean value
26\li R denotes variance (written in full matrix regardles of the used decomposition),
27\li parameters mu and R are vector and matrix, respectively. They can be given directly (as in Nab.mu) or as a result of arbitrary matlab function, (as in Nab.R)
28\li rv denotes names assigned to the variables. RV is more complicated structure, but here it is sufficient to use default values.
29\li rv is an optional parameter, some operations do not need it, such as sampling or evaluation of moments
30
31For generating samples try:
32\code
33>> M=epdf_sample_mat(Nab,4);
34\endcode
35which should return 4 samples of the Nab distribution.
36
37For evaluation of mean and variance:
38\code
39>> Nab_m=epdf_mean(Nab);
40>> Nab_v=epdf_variance(Nab);
41\endcode
42
43Other distributions are created analogously, see <a href="annotated_bdm_epdf.html"> list </a>.
44
45\section ug_pdf_marg Marginalization and conditioning
46
47Basic operations on pdfs are marginalization and conditioning, which are provided by mex functions edpf_marginal and epdf_condition, respectively.
48
49This operation does require the rv parametetr to be fully specified. If it isn't, it will fail with the following message
50\code
51--- fill in the message ----
52\endcode
53
54If rv is correctly specified, marginal pdf of Nab on variable "a" is obtained by:
55\code
56Na = epdf_marginal(Nab,RV('a'));
57\endcode
58
59Similarly for conditional:
60\code
61Na_b = epdf_condition(Nab,RV('a'));
62Nb_a = epdf_condition(Nab,RV('b'));
63\endcode
64
65\section ug_pdf_cond Conditioned densities
66Note that the result of conditioning is of type "mlnorm\<ldmat\>" which is a special case of pdf with variables in condition, specifically
67\f[ f(a|b) = \mathcal{N}(A*b+const, R)\f]
68i.e. "Normal distributed pdf with mean value as linear function of variable b".
69
70This type of pdfs differ from previously used type is the way of use. For example, it is not possible to sample directly form such density,
71it is necessary to specify what is the value of variable in condition.
72
73That is why a different function is used:
74\code
75Smp=pdf_samplecond_mat(Na_b, 10)
76\endcode
77
78The conditioned and Unconditioned pdf may be combined together in the chain rule. The chain rule can be of two different types: conditioned or unconditioned, i.e.:
79\f[ f(a,b)=f(a|b)f(b), OR, f(a,b|c)=f(a|b)f(b|c)\f]
80Thus it is differently encoded as:
81\code
82fab.class = 'eprod';         % result is unconditioned pdf
83fab.pdfs  = {fa_b, fb};
84
85fab_c.class = 'mprod';       % result is conditioned pdf
86fab_c.pdfs  = {fa_b, fb_c};
87\endcode
88
89\section ug_pdf_fnc Pdfs with functional transformation
90
91In more general type of pdfs, variables in condition may be transformed by a function.
92For example Gaussian density with nonlinear transformation of mean value, \f$ f(x|y) = \mathcal{N}(g(y), R)\f$, is represented by class \c mgnorm
93
94\code
95fx.class  = 'mgnorm<ldmat>';             
96fx.g      = 'mexFunction';              % function is evaluated in matlab
97fx.g.function = 'test_function';         % name of the matlab function to evaluate
98fx.g.dim  = 2;                          % expected dimension of output
99fx.g.dimc = 2;                          % expected dimension of input
100fx.R      = eye(2);                     % variance R
101\endcode
102
103This example is using generic function specified by name of Matlab .m file.
104Compulsory fields \c g.dim and \c g.dimc are used to check correct dimension of inputs and outputs of the function.
105
106List of <a href="annotated_bdm_epdf.html"> functions </a>.
107
108\section ug_pdf_mex Using Matlab classes of pdfs
109
110Access to Matlab defined classe of pdfs is provided via structure:
111\code
112class = 'mexEpdf';
113object = any_object_of_mexEpdf;
114\endcode
115where object can be created by any offspring of mexEpdf.
116
117See \ref mex_bdm, and files: mex/mex_classes/mexEpdf.m
118
119If you wish to write your own Matlab classes see \ref devguide_mat.
120
121For list of all available pdf objects, see <a href="annotated_bdm_epdf.html"> BDM epdfs </a>, <a href="annotated_bdm_pdf.html"> BDM pdfs </a> and <a href="annotated.html"> Matlab classes </a>.
122*/
Note: See TracBrowser for help on using the browser.