/*! \file \brief Application Estimator The general task of estimation is defined on the following scheme: \dot digraph estimation{ node [shape=box]; {rank="same"; "Data Source"; "Bayesian Model"} "Data Source" -> "Bayesian Model" [label="data"]; "Bayesian Model" -> "Result Logger" [label="estimated\n statistics"]; "Data Source" -> "Result Logger" [label="Simulated\n data"]; } \enddot Here, \li Data Source is an object (class DS) providing sequential data, \f$ [d_1, d_2, \ldots d_t] \f$. \li Bayesian Model is an object (class BM) performing Bayesian filtering, \li Result Logger is an object (class logger) dedicated to storing important data from the experiment. \section cmd Command-line usage Execute command: \code $> estimator config_file.cfg \endcode Full description of the experiment is in the file config_file.cfg which is expected to have the following structure: \code system = {type = "DS_offspring", ...}; // definition of a data source estimator = {type = "BM_offspring", ...}; // definition of an estimator logger = {type = "logger_type",...}; // definition of a logger experiment = {ndat = 11000; }; // definition of number of data records \endcode The above description must be specialized to specific classes. See, \subpage arx_ui how to do it for estimation of an ARX model. \section ex Matlab usage Execute command: \code >> estimator('config_file.cfg'); \endcode when using loggers storing results on hard drives, and \code >> Res=estimator('config_file.cfg'); \endcode when using logger of the type \c "mex_logger". The results will be stored in structure \c M. */ #include #include #include #include using namespace bdm; int main ( int argc, char* argv[] ) { const char *fname; if ( argc>1 ) { fname = argv[1]; } else { cout << "Missing configuration file.\n Usage: \n $> estimator config_file.cfg"; //abort(); } fname = "arx_test.cfg"; UI_File F ( fname ); logger* L = UI::build( F, "logger"); ArxDS * DS = UI::build( F, "system" ); BM* E = UI::build( F, "estimator" ); int Ndat = F.lookupValue ( "experiment.ndat",Ndat ); DS->log_add ( *L ); int L_est= L->add ( E->posterior()._rv(), "est" ); // estimate int L_lb = L->add ( E->posterior()._rv(), "lb" ); // lower bound int L_ub = L->add ( E->posterior()._rv(), "ub" ); // upper bound L->init(); vec dt=zeros ( DS->_drv()._dsize() ); //data variable datalink dl ( E->_drv(),DS->_drv() ); //datalink between a datasource and estimator for ( int tK=1;tKstep(); // simulator step DS->getdata ( dt ); // read data E->bayes ( dl.pushdown ( dt ) ); // update estimates DS->logit ( *L ); L->logit ( L_est, E->posterior().mean() ); L->logit ( L_lb, E->posterior().mean()-2*sqrt ( E->posterior().variance() ) ); L->logit ( L_ub, E->posterior().mean() +2*sqrt ( E->posterior().variance() ) ); L->step(); } L->finalize(); delete L; delete DS; delete E; return 0; }