root/applications/bdmtoolbox/mex/mex_classes/mexBM.m @ 1448

Revision 1054, 2.1 kB (checked in by smidl, 15 years ago)

doc

Line 
1%> @file mexEpdf.m
2%> @brief File mapping root class of BM from BDM
3% ======================================================================
4%> @brief Abstract class of Bayesian Model (estimator), bdm::BM
5%
6%> This class provides a bridge between bdm::BM and Matlab
7% ======================================================================
8classdef mexBM
9    properties
10        %> description of internal variables of parameters
11        rv=RV
12        %> description of internal variables of data in condition
13        rvc=RV
14        %> description of internal variables of observed data
15        rvy=RV
16        %> log of evidence (marginal likelihood) potentially computed by the
17        % bayes rule for one step
18        log_evidence
19        %> posterior density - offspring of mexEpdf!
20        apost_pdf
21        %
22    end
23
24    methods
25        %> check consistency of the object and fill defaults
26        function p=validate(p)
27            % checks if all paramateres match
28        end
29        %> dimensionality of the class: dims = [size_of_posterior size_of_data size_of_condition]
30        function dims=dimensions(p)
31            %please fill
32            %dims = [size_of_posterior size_of_data size_of_condition]
33            dims = [0,0,0] %
34        end
35        %> Performs Bayesian update of the internal posterior using data \a dt and condition \a cond.
36        function obj=bayes(obj,dt,cond)
37            % transform old estimate into new estimate
38        end
39        %> Computes predictor of the observed data in the next step
40        function p=epredictor(obj,cond)
41            % return posterior density
42        end
43
44        %%%%%%%% default functions %%%%%%%%%%%%%%
45        function r = get_rv(obj)
46            r=obj.rv;
47        end
48        function r = get_rvc(obj)
49            r=obj.rvc;
50        end
51        function r = get_rvy(obj)
52            r=obj.rvy;
53        end
54        %> Evidence of the last data, \f[f(y_t|y_0\ldots y_t-1, cond_0\ldots cond_t\f]
55        function ev = logevidence(obj)
56            ev = obj.log_evidence;
57        end
58        %> Posterior pdf
59        function post=posterior(obj);
60            post = obj.apost_pdf;
61        end
62    end
63end
Note: See TracBrowser for help on using the browser.