1 | %> @file mexEpdf.m |
---|
2 | %> @brief File mappring root class of epdf from BDM |
---|
3 | % ====================================================================== |
---|
4 | %> @brief Abstract class of unconditional probability density function (epdf) |
---|
5 | % |
---|
6 | %> This class provides a bridge between bdm::epdf and Matlab |
---|
7 | % ====================================================================== |
---|
8 | classdef mexEpdf |
---|
9 | properties |
---|
10 | %> Description of random variable (see definitiopn of RV) |
---|
11 | rv=RV; |
---|
12 | end |
---|
13 | methods |
---|
14 | %> Function returning mean value of this epdf |
---|
15 | function m=mean(p) |
---|
16 | error('define how to compute mean') |
---|
17 | end |
---|
18 | %> This function is called before using the object. It should check consistency of the properties and fill default values. |
---|
19 | function validate(p) |
---|
20 | error('check if the density is consistent') |
---|
21 | end |
---|
22 | %> Tell the world around it dimension of the random variable |
---|
23 | function dim=dimension(p) |
---|
24 | error('return dimension of the density') |
---|
25 | end |
---|
26 | %> Function returning variance of this epdf |
---|
27 | function v=variance(p) |
---|
28 | error('define how to compute mean') |
---|
29 | end |
---|
30 | %> Function returning logarithm of likelihood function in point x |
---|
31 | function l=evallog(p,x) |
---|
32 | error('define how to evaluate log of this density at point x') |
---|
33 | end |
---|
34 | %> Function returning a signle sample from this density |
---|
35 | function l=sample(p) |
---|
36 | error('define how to sample from this density') |
---|
37 | end |
---|
38 | |
---|
39 | %%% default functions -- no need to redefine %%% |
---|
40 | |
---|
41 | %> Function returning logarithm of NON-normalized likelihood function in point x (speed optimization) |
---|
42 | function l=evallog_nn(p,x) |
---|
43 | % define how to evaluate non-normalized log of this density at point x |
---|
44 | % makes sense if faster than normalized |
---|
45 | l=evallog(p,x); |
---|
46 | end |
---|
47 | |
---|
48 | function r=get_rv(p) |
---|
49 | r=p.rv; |
---|
50 | end |
---|
51 | %> Function returning a matrix of n samples from this density, |
---|
52 | function m = samplemat(obj, n) |
---|
53 | m = zeros(obj.dimension, n); |
---|
54 | for i=1:n |
---|
55 | m(:,i) = obj.sample; |
---|
56 | end |
---|
57 | end |
---|
58 | end |
---|
59 | end |
---|