Revision 1191, 1.1 kB
(checked in by smidl, 14 years ago)
|
OO implementation of Kalman in Matlab
|
Line | |
---|
1 | %> @file mexLaplace.m |
---|
2 | %> @brief Matlab implementation of Gaussian density |
---|
3 | % ====================================================================== |
---|
4 | %> @brief Unconditional Gaussian density |
---|
5 | % |
---|
6 | %> \f[ f(x|\mu,b) \propto \exp(-(x-\mu)'R^{-1}(x-\mu))\f] |
---|
7 | % ====================================================================== |
---|
8 | classdef mexGauss < mexEpdf |
---|
9 | properties |
---|
10 | mu % mean values |
---|
11 | R % variance |
---|
12 | end |
---|
13 | methods |
---|
14 | function m=mean(obj) |
---|
15 | m = obj.mu; |
---|
16 | end |
---|
17 | function obj=validate(obj) |
---|
18 | if size(obj.R,1)~=size(obj.R,2) |
---|
19 | error('matrix R is not square'); |
---|
20 | end |
---|
21 | if length(obj.mu)~=size(obj.R,1) |
---|
22 | error('incompatible mu and R'); |
---|
23 | end |
---|
24 | end |
---|
25 | function dim=dimension(obj) |
---|
26 | dim = size(obj.mu,1); |
---|
27 | end |
---|
28 | function v=variance(obj) |
---|
29 | v=diag(R); |
---|
30 | end |
---|
31 | function l=evallog(obj,x) |
---|
32 | l=-log(2*obj.b)-abs(x-obj.mu)/obj.b; |
---|
33 | end |
---|
34 | function s=sample(obj) |
---|
35 | z = randn(obj.dimension); |
---|
36 | s = obj.mu+chol(R)'*z; |
---|
37 | end |
---|
38 | end |
---|
39 | end |
---|