root/applications/bdmtoolbox/mex/mex_classes/mexLaplaceBM.m @ 974

Revision 944, 1.6 kB (checked in by smidl, 15 years ago)

Doc + new examples

Line 
1classdef mexLaplaceBM < mexBM
2    % Approximate Bayesian estimator of parameters of Laplace distributed observation.
3    % Maximum likelihood approximation of the Bayes rule is used, posterior is in the form of dirac.
4    properties
5        max_window_length = 10;   % max window length
6        data_window =[];          % estimate of mu is median of observations
7    end
8    methods
9        function obj=validate(obj)
10            % prepare all internal objects for use
11            obj.apost_pdf = mexDirac;
12            obj.apost_pdf.point = [0;0];
13            obj.log_evidence = 0; % evidence is not computed!
14            disp('val');
15        end
16
17        function dims=dimensions(obj)
18            %please fill
19            %dims = [size_of_posterior size_of_data size_of_condition]
20            dims = [2,1,0] % we have: [2d parameters, 1d observations, 0d condition]
21        end
22        function obj=bayes(obj,dt,cond)
23            if size(obj.data_window,2)>=obj.max_window_length
24                obj.data_window = [dt obj.data_window(1:end-1)];
25            else
26                obj.data_window = [dt obj.data_window];
27            end
28            % transform old estimate into new estimate
29            m_hat = mean(obj.data_window);
30            b_hat = sum(abs(obj.data_window-m_hat))/ size(obj.data_window,2);
31            obj.apost_pdf.point = [m_hat; b_hat];
32        end
33        function p=epredictor(obj,cond)
34            % return predictive density (max likelihood)
35            p = mexLaplace;
36            p.mu = obj.apost_pdf.point(1);
37            p.b  = obj.apost_pdf.point(2);
38            p=p.validate;
39        end
40    end
41
42end
Note: See TracBrowser for help on using the browser.