| 1 | clear all; |
|---|
| 2 | % name random variables |
|---|
| 3 | y1 = RV({'y1'},1); |
|---|
| 4 | y2 = RV({'y2'},1); |
|---|
| 5 | y3 = RV({'y3'},1); |
|---|
| 6 | u1 = RV({'u1'},1); |
|---|
| 7 | u2 = RV({'u2'},1); |
|---|
| 8 | |
|---|
| 9 | % create f(y_t| y_{t-3}, u_{t-1}) |
|---|
| 10 | fy.class = 'mlnorm<ldmat>'; |
|---|
| 11 | fy.rv = RVjoin([y1,y2,y3]); |
|---|
| 12 | fy.rvc = RVtimes([y1,y2,y3,u1,u1,u2,u2], [-1, -1, -1, 0, -1, 0, -1]); |
|---|
| 13 | fy.A = [0.8 , 0.2 , 0 , -0.3 , 0.4 , 0 , 0;... |
|---|
| 14 | -0.2 , 0.5 , -0.8 , 0.2 , 0.5 , -0.2 , -0.5;... |
|---|
| 15 | 0 , 1.1 , -0.5 , 0 , 0 , -0.2 , 0.3]; |
|---|
| 16 | fy.const = [0;0;0]; |
|---|
| 17 | fy.R = 0.1*eye(3); |
|---|
| 18 | |
|---|
| 19 | DS.class = 'PdfDS'; |
|---|
| 20 | DS.pdf = fy; |
|---|
| 21 | |
|---|
| 22 | % create ARX estimator |
|---|
| 23 | A1.class = 'ARX'; |
|---|
| 24 | A1.rv = RVjoin([y1,y2]); |
|---|
| 25 | A1.rgr = RVtimes([y1,y2,u1,u1],[-1, -1, 0, -1]) ; % correct structure is {y,y} |
|---|
| 26 | A1.options ='logbounds,logll'; |
|---|
| 27 | A1.frg = 0.99; |
|---|
| 28 | |
|---|
| 29 | A2=A1; |
|---|
| 30 | A2.rv = RVjoin([y2,y3]); |
|---|
| 31 | A2.rgr = RVtimes([y2,y3,u2,u2],[-1, -1, 0, -1]) ; % correct structure is {y,y} |
|---|
| 32 | |
|---|
| 33 | C1.class = 'LQG_ARX'; |
|---|
| 34 | C1.ARX = A1; |
|---|
| 35 | C1.Qu = 0.1; |
|---|
| 36 | C1.Qy = 0.1*eye(2); |
|---|
| 37 | C1.yreq = [0;1]; %y2=1 |
|---|
| 38 | C1.horizon = 1; |
|---|
| 39 | |
|---|
| 40 | C2=C1; |
|---|
| 41 | C2.ARX = A2; |
|---|
| 42 | C2.yreq = [1;0]; %y2=1 |
|---|
| 43 | |
|---|
| 44 | P1.class = 'ARXAgent'; |
|---|
| 45 | P1.name = 'P1'; |
|---|
| 46 | P1.lqg_arx = C1; |
|---|
| 47 | P1.lqg_arx.class = 'LQG_ARX'; |
|---|
| 48 | P1.merger.class = 'merger_mix'; |
|---|
| 49 | P1.merger.method = 'geometric'; |
|---|
| 50 | %P1.merger.dbg_file = 'mp.it'; |
|---|
| 51 | P1.merger.ncoms = 20; |
|---|
| 52 | P1.merger.stop_niter= 5; |
|---|
| 53 | P1.neighbours = {};%{'P2'}; |
|---|
| 54 | |
|---|
| 55 | P2=P1; |
|---|
| 56 | P2.name = 'P2'; |
|---|
| 57 | P2.lqg_arx = C2; |
|---|
| 58 | P2.neighbours = {}; |
|---|
| 59 | |
|---|
| 60 | exper.Ndat = 10; |
|---|
| 61 | exper.burnin = 3; |
|---|
| 62 | exper.burn_pdf.class = 'enorm<ldmat>'; |
|---|
| 63 | exper.burn_pdf.mu = [0;0]; |
|---|
| 64 | exper.burn_pdf.R = 0.01*eye(2); |
|---|
| 65 | |
|---|
| 66 | |
|---|
| 67 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MONTE CARLO %%%%%%%%%%%%%%%%%%% |
|---|
| 68 | |
|---|
| 69 | Ntrials = 100; |
|---|
| 70 | loss_non_coop = zeros(1,Ntrials); |
|---|
| 71 | for i=1:Ntrials |
|---|
| 72 | M= arena(DS,{P1,P2},exper); |
|---|
| 73 | |
|---|
| 74 | Y = [M.DS_y1 M.DS_y2 M.DS_y3]; |
|---|
| 75 | Yreq = ones(size(M.DS_y1))*[0 1 0]; |
|---|
| 76 | loss_non_coop(i) = trace((Y-Yreq)'*0.01*(Y-Yreq)) + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 77 | if loss_non_coop(i)>100 |
|---|
| 78 | %keyboard |
|---|
| 79 | end |
|---|
| 80 | end |
|---|
| 81 | mean(loss_non_coop) |
|---|
| 82 | |
|---|
| 83 | loss_coop = zeros(1,Ntrials); |
|---|
| 84 | for i=1:Ntrials |
|---|
| 85 | P1.neighbours = {'P2'}; |
|---|
| 86 | P2.neighbours = {'P1'}; |
|---|
| 87 | M= arena(DS,{P1,P2},exper); |
|---|
| 88 | |
|---|
| 89 | Y = [M.DS_y1 M.DS_y2 M.DS_y3]; |
|---|
| 90 | Yreq = ones(size(M.DS_y1))*[0 1 0]; |
|---|
| 91 | loss_coop(i) = trace((Y-Yreq)'*0.01*(Y-Yreq)) + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 92 | if loss_coop(i)>100 |
|---|
| 93 | %keyboard |
|---|
| 94 | end |
|---|
| 95 | end |
|---|
| 96 | mean(loss_coop) |
|---|
| 97 | |
|---|