| 1 | % name random variables |
|---|
| 2 | y = RV({'y'},1); |
|---|
| 3 | u1 = RV({'u1'},1); |
|---|
| 4 | u2 = RV({'u2'},1); |
|---|
| 5 | |
|---|
| 6 | % create f(y_t| y_{t-3}, u_{t-1}) |
|---|
| 7 | fy.class = 'mlnorm<ldmat>'; |
|---|
| 8 | fy.rv = y; |
|---|
| 9 | fy.rvc = RVtimes([y,u1,u2], [-3, 0, 0]); |
|---|
| 10 | fy.A = [0.5, -0.9, 0.9]; |
|---|
| 11 | fy.const = 0; |
|---|
| 12 | fy.R = 1e-2; |
|---|
| 13 | |
|---|
| 14 | DS.class = 'PdfDS'; |
|---|
| 15 | DS.pdf = fy; |
|---|
| 16 | |
|---|
| 17 | % create ARX estimator |
|---|
| 18 | A1.class = 'ARX'; |
|---|
| 19 | A1.rv = y; |
|---|
| 20 | A1.rgr = RVtimes([y,u1],[-3,0]) ; % correct structure is {y,y} |
|---|
| 21 | A1.log_level ='logbounds,logevidence'; |
|---|
| 22 | A1.frg = 0.95; |
|---|
| 23 | |
|---|
| 24 | A2=A1; |
|---|
| 25 | A2.rgr = RVtimes([y,u2],[-3,0]) ; % correct structure is {y,y} |
|---|
| 26 | |
|---|
| 27 | |
|---|
| 28 | C1.class = 'LQG_ARX'; |
|---|
| 29 | C1.ARX = A1; |
|---|
| 30 | C1.Qu = 0.01*eye(1); |
|---|
| 31 | C1.Qy = 1*eye(1); |
|---|
| 32 | C1.yreq = 1; |
|---|
| 33 | C1.horizon = 1; |
|---|
| 34 | |
|---|
| 35 | C2=C1; |
|---|
| 36 | C2.ARX = A2; |
|---|
| 37 | |
|---|
| 38 | P1.class = 'ARXAgent'; |
|---|
| 39 | P1.name = 'P1'; |
|---|
| 40 | P1.lqg_arx = C1; |
|---|
| 41 | P1.lqg_arx.class = 'LQG_ARX'; |
|---|
| 42 | P1.merger.class = 'merger_mix'; |
|---|
| 43 | P1.merger.method = 'geometric'; |
|---|
| 44 | %P1.merger.dbg_file = 'mp.it'; |
|---|
| 45 | P1.merger.ncoms = 20; |
|---|
| 46 | P1.merger.stop_niter= 5; |
|---|
| 47 | P1.neighbours = {};%{'P2'}; |
|---|
| 48 | |
|---|
| 49 | P2=P1; |
|---|
| 50 | P2.name = 'P2'; |
|---|
| 51 | P2.lqg_arx = C2; |
|---|
| 52 | P2.neighbours = {}; |
|---|
| 53 | |
|---|
| 54 | exper.Ndat = 10; |
|---|
| 55 | exper.burnin = 3; |
|---|
| 56 | exper.burn_pdf.class = 'enorm<ldmat>'; |
|---|
| 57 | exper.burn_pdf.mu = [0;0]; |
|---|
| 58 | exper.burn_pdf.R = 0.01*eye(2); |
|---|
| 59 | |
|---|
| 60 | |
|---|
| 61 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MONTE CARLO %%%%%%%%%%%%%%%%%%% |
|---|
| 62 | |
|---|
| 63 | Ntrials = 3; |
|---|
| 64 | loss_non_coop = zeros(1,Ntrials); |
|---|
| 65 | for i=1:Ntrials |
|---|
| 66 | M= arena(DS,{P1,P2},exper); |
|---|
| 67 | |
|---|
| 68 | loss_non_coop(i) = (M.DS_y-C1.yreq)'*C1.Qy*(M.DS_y-C1.yreq) + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 69 | if loss_non_coop(i)>100 |
|---|
| 70 | %keyboard |
|---|
| 71 | end |
|---|
| 72 | end |
|---|
| 73 | mean(loss_non_coop) |
|---|
| 74 | |
|---|
| 75 | loss_coop = zeros(1,Ntrials); |
|---|
| 76 | for i=1:Ntrials |
|---|
| 77 | P1.neighbours = {'P2'}; |
|---|
| 78 | P2.neighbours = {'P1'}; |
|---|
| 79 | M= arena(DS,{P1,P2},exper); |
|---|
| 80 | |
|---|
| 81 | loss_coop(i) = (M.DS_y-C1.yreq)'*C1.Qy*(M.DS_y-C1.yreq) + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 82 | if loss_coop(i)>100 |
|---|
| 83 | %keyboard |
|---|
| 84 | end |
|---|
| 85 | end |
|---|
| 86 | mean(loss_coop) |
|---|
| 87 | |
|---|