| 1 | clear all; |
|---|
| 2 | % name random variables |
|---|
| 3 | y1 = RV({'y1'},1); |
|---|
| 4 | y2 = RV({'y2'},1); |
|---|
| 5 | y3 = RV({'y3'},1); |
|---|
| 6 | u1 = RV({'u1'},1); |
|---|
| 7 | u2 = RV({'u2'},1); |
|---|
| 8 | |
|---|
| 9 | % create f(y_t| y_{t-3}, u_{t-1}) |
|---|
| 10 | fy.class = 'mlnorm<ldmat>'; |
|---|
| 11 | fy.rv = RVjoin([y1,y2,y3]); |
|---|
| 12 | fy.rvc = RVtimes([y1,y2,y3,u1,u1,u2,u2], [-1, -1, -1, 0, -1, 0, -1]); |
|---|
| 13 | fy.A = [0.8 , 0.2 , 0.0 , -0.3 , 0.4 , 0 , 0;... |
|---|
| 14 | -0.2 , 0.5 , -0.8 , 0.2 , 0.5 , -0.2 , -0.5;... |
|---|
| 15 | 0.0 , 1.1 , -0.5 , 0 , 0 , -0.2 , 0.3]; |
|---|
| 16 | fy.const = [0;0;0]; |
|---|
| 17 | fy.R = 0.1*eye(3); |
|---|
| 18 | |
|---|
| 19 | DS.class = 'PdfDS'; |
|---|
| 20 | DS.pdf = fy; |
|---|
| 21 | |
|---|
| 22 | % create ARX estimator |
|---|
| 23 | A1.class = 'ARX'; |
|---|
| 24 | A1.rv = RVjoin([y1,y2]); |
|---|
| 25 | A1.rgr = RVtimes([y1,y2,u1,u1],[-1, -1, 0, -1]) ; % correct structure is {y,y} |
|---|
| 26 | A1.log_level ={'logbounds','loglikelihood'}; |
|---|
| 27 | A1.constant=0; |
|---|
| 28 | A1.frg = 0.99; |
|---|
| 29 | |
|---|
| 30 | A2=A1; |
|---|
| 31 | A2.rv = RVjoin([y2,y3]); |
|---|
| 32 | A2.rgr = RVtimes([y2,y3,u2,u2],[-1, -1, 0, -1]) ; % correct structure is {y,y} |
|---|
| 33 | |
|---|
| 34 | Ag=A1; |
|---|
| 35 | Ag.rv = RVjoin([y1,y2,y3]); |
|---|
| 36 | Ag.rgr = RVtimes([y1,y2,y3,u1,u1,u2,u2],[-1, -1, -1, 0, -1, 0, -1]) ; % correct structure is {y,y} |
|---|
| 37 | Ag.log_level = {'full'}; |
|---|
| 38 | |
|---|
| 39 | C1.class = 'LQG_ARX'; |
|---|
| 40 | C1.ARX = A1; |
|---|
| 41 | C1.Qu = 0.01; |
|---|
| 42 | C1.Qy = 10*eye(2); |
|---|
| 43 | C1.yreq = [0;1]; %y2=1 |
|---|
| 44 | C1.horizon = 300; |
|---|
| 45 | C1.windsurfer = 0; |
|---|
| 46 | |
|---|
| 47 | C2=C1; |
|---|
| 48 | C2.ARX = A2; |
|---|
| 49 | C2.yreq = [1;0]; %y2=1 |
|---|
| 50 | |
|---|
| 51 | Cg.class = 'LQG_ARX'; |
|---|
| 52 | Cg.ARX = Ag; |
|---|
| 53 | Cg.Qu = 0.01*eye(2); |
|---|
| 54 | Cg.Qy = 10*eye(3); |
|---|
| 55 | Cg.yreq = [0;1;0]; %y2=1 |
|---|
| 56 | Cg.horizon = 300; |
|---|
| 57 | |
|---|
| 58 | P1.class = 'ARXAgent'; |
|---|
| 59 | P1.name = 'P1'; |
|---|
| 60 | P1.lqg_arx = C1; |
|---|
| 61 | P1.lqg_arx.class = 'LQG_ARX'; |
|---|
| 62 | P1.merger.class = 'merger_mix'; |
|---|
| 63 | P1.merger.method = 'geometric'; |
|---|
| 64 | %P1.merger.dbg_file = 'mp.it'; |
|---|
| 65 | P1.merger.ncoms = 1; |
|---|
| 66 | P1.merger.stop_niter= 5; |
|---|
| 67 | P1.neighbours = {};%{'P2'}; |
|---|
| 68 | |
|---|
| 69 | P2=P1; |
|---|
| 70 | P2.name = 'P2'; |
|---|
| 71 | P2.lqg_arx = C2; |
|---|
| 72 | P2.neighbours = {}; |
|---|
| 73 | |
|---|
| 74 | Pg=P1; |
|---|
| 75 | Pg.name = 'Pg'; |
|---|
| 76 | Pg.lqg_arx = Cg; |
|---|
| 77 | Pg.neighbours = {}; |
|---|
| 78 | |
|---|
| 79 | exper.Ndat = 200; |
|---|
| 80 | exper.burnin = 10; |
|---|
| 81 | exper.burn_pdf.class = 'enorm<ldmat>'; |
|---|
| 82 | exper.burn_pdf.mu = [0;0]; |
|---|
| 83 | exper.burn_pdf.R = 0.01*eye(2); |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% MONTE CARLO %%%%%%%%%%%%%%%%%%% |
|---|
| 87 | |
|---|
| 88 | Ntrials = 1; |
|---|
| 89 | loss_non_coop = zeros(1,Ntrials); |
|---|
| 90 | for i=1:Ntrials |
|---|
| 91 | M= arena(DS,{P1,P2},exper); |
|---|
| 92 | |
|---|
| 93 | Y = [M.DS_y1 M.DS_y2 M.DS_y3]; |
|---|
| 94 | Yreq = ones(size(M.DS_y1))*[0 1 0]; |
|---|
| 95 | loss_non_coop(i) = trace((Y-Yreq)*Cg.Qy*(Y-Yreq)') + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 96 | if loss_non_coop(i)>100 |
|---|
| 97 | % keyboard |
|---|
| 98 | end |
|---|
| 99 | end |
|---|
| 100 | mean(loss_non_coop) |
|---|
| 101 | |
|---|
| 102 | loss_glob = zeros(1,Ntrials); |
|---|
| 103 | for i=1:Ntrials |
|---|
| 104 | [M,Set]= controlloop(DS,{Cg},exper); |
|---|
| 105 | |
|---|
| 106 | Y = [M.DS_y1 M.DS_y2 M.DS_y3]; |
|---|
| 107 | Yreq = ones(size(M.DS_y1))*[0 1 0]; |
|---|
| 108 | loss_glob(i) = trace((Y-Yreq)*Cg.Qy*(Y-Yreq)') + M.DS_u1'*C1.Qu*M.DS_u1 + M.DS_u2'*C1.Qu*M.DS_u2; |
|---|
| 109 | if (~isfinite(loss_glob(i))) |
|---|
| 110 | keyboard |
|---|
| 111 | end |
|---|
| 112 | end |
|---|
| 113 | mean(loss_glob) |
|---|