[640] | 1 | % load data created by the MpdfDS_example |
---|
[709] | 2 | load pdfds_results |
---|
[640] | 3 | |
---|
| 4 | DS.class = 'MemDS'; |
---|
| 5 | DS.Data = Data; |
---|
| 6 | DS.drv = drv; |
---|
| 7 | |
---|
| 8 | %%%%%% ARX estimator conditioned on frg |
---|
| 9 | |
---|
| 10 | A1.class = 'ARXfrg'; |
---|
| 11 | A1.rv = y; |
---|
| 12 | A1.rgr = RVtimes([y,u],[-3,-1]) ; |
---|
[895] | 13 | A1.log_level = 'logbounds,logevidence'; |
---|
[640] | 14 | A1.frg = 0.9; |
---|
| 15 | A1.name = 'A1'; |
---|
| 16 | |
---|
[895] | 17 | |
---|
[640] | 18 | %%%%%% Random walk on frg - Dirichlet |
---|
| 19 | phi_pdf.class = 'mDirich'; % random walk on coefficient phi |
---|
[700] | 20 | phi_pdf.rv = RV({'phi','1_phi'}); % 2D random walk - frg is the first element |
---|
[640] | 21 | phi_pdf.k = 0.01; % width of the random walk |
---|
[895] | 22 | phi_pdf.betac = [0.1 0.1]; % stabilizing elememnt of random walk |
---|
[640] | 23 | |
---|
[895] | 24 | %%%%%% Particle |
---|
| 25 | p.class = 'MarginalizedParticle'; |
---|
| 26 | p.parameter_pdf = phi_pdf; % Random walk is the parameter evolution model |
---|
| 27 | p.bm = A1; |
---|
| 28 | |
---|
| 29 | % prior on ARX |
---|
[640] | 30 | %%%%%% Combining estimators in Marginalized particle filter |
---|
[895] | 31 | E.class = 'PF'; |
---|
| 32 | E.particle = p; % ARX is the analytical part |
---|
[640] | 33 | E.res_threshold = 1.0; % resampling parameter |
---|
[700] | 34 | E.n = 10; % number of particles |
---|
[640] | 35 | E.prior.class = 'eDirich'; % prior on non-linear part |
---|
[661] | 36 | E.prior.beta = [2 1]; % |
---|
[895] | 37 | E.log_level = 'logbounds,logevidence'; |
---|
[640] | 38 | E.name = 'MPF'; |
---|
| 39 | |
---|
| 40 | M=estimator(DS,{E}); |
---|
| 41 | |
---|
| 42 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 43 | % plot results |
---|
[700] | 44 | ndat = size(M.DS_u,1); |
---|
[640] | 45 | |
---|
| 46 | figure(1); |
---|
| 47 | subplot(2,2,1); |
---|
[700] | 48 | plotestimates(true_theta, M.MPF_apost_mean_theta, M.MPF_apost_lb_theta, M.MPF_apost_ub_theta); |
---|
[640] | 49 | title(' Regression parameters \theta') |
---|
| 50 | set(gca,'YLim',[-1.5,1]); |
---|
| 51 | |
---|
| 52 | subplot(2,2,2); |
---|
[700] | 53 | plotestimates(true_R, M.MPF_apost_mean_r,M.MPF_apost_lb_r,M.MPF_apost_ub_r); |
---|
[640] | 54 | title('Variance parameters r') |
---|
| 55 | |
---|
| 56 | subplot(2,2,3); |
---|
[700] | 57 | plotestimates(1, M.MPF_apost_mean_phi(:,1),M.MPF_apost_lb_phi(:,1),M.MPF_apost_ub_phi(:,1)); |
---|
[640] | 58 | title('Forgetting factor') |
---|
| 59 | |
---|