clear all % load data created by the MpdfDS_example load pdfds_results DS.class = 'MemDS'; DS.Data = Data; DS.drv = drv; %%%%%% ARX estimator conditioned on frg A1.class = 'ARXpartialforg'; A1.yrv = y; A1.rv = RV({'theta','r'},[2,1]); A1.rgr = RVtimes([y,u],[-3,-1]) ; A1.log_level = 'logbounds'; A1.constant = 0; A1.name = 'A1'; Apri =A1; Apri.class = 'ARX'; DSpri = DS; DSpri.Data = DS.Data(:,1:40); % get decent prior -- estimate with data first [Dum,post]=estimator(DSpri,{Apri}); A1.prior = post.estimators{1}.posterior; % we have 2 parameters - i.e. 4 hypotheses %%%%%% Random walk on frg - Dirichlet walk.class = 'mBeta'; % random walk on coefficient phi walk.rv = RV({'phi'},4); % 2D random walk - frg is the first element walk.k = 0.001*ones(1,4); % width of the random walk walk.betac = 0.1*ones(1,4); % stabilizing elememnt of random walk %%%%%% Particle p.class = 'MarginalizedParticle'; p.parameter_pdf = walk; % Random walk is the parameter evolution model p.bm = A1; % prior on ARX %%%%%% Combining estimators in Marginalized particle filter E.class = 'PF'; E.particle = p; % ARX is the analytical part E.res_threshold = 0.7; % resampling parameter E.n = 100; % number of particles E.prior.class = 'eBeta'; % prior on non-linear part E.prior.alpha = 5*ones(1,4); % E.prior.beta = ones(1,4); % E.log_level = 'logbounds,logweights,logmeans,logvars'; E.name = 'MPF'; [M,Str]=estimator(DS,{E}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % plot results ndat = size(M.DS_dt_u,1); figure(1); subplot(2,2,1); plotestimates(true_theta, M.MPF_apost_mean_theta, M.MPF_apost_lbound_theta, M.MPF_apost_ubound_theta); title(' Regression parameters \theta') set(gca,'YLim',[-1.5,1]); subplot(2,2,2); plotestimates(true_R, M.MPF_apost_mean_r,M.MPF_apost_lbound_r,M.MPF_apost_ubound_r); title('Variance parameters r') subplot(2,2,3); plotestimates(1, M.MPF_apost_mean_phi(:,1),M.MPF_apost_lbound_phi(:,1),M.MPF_apost_ubound_phi(:,1)); title('Forgetting factor')