1 | clear all |
---|
2 | % load data created by the MpdfDS_example |
---|
3 | load pdfds_results |
---|
4 | |
---|
5 | DS.class = 'MemDS'; |
---|
6 | DS.Data = Data; |
---|
7 | DS.drv = drv; |
---|
8 | |
---|
9 | |
---|
10 | %%%%%% ARX estimator conditioned on frg |
---|
11 | |
---|
12 | A1.class = 'ARXpartialforg'; |
---|
13 | A1.yrv = y; |
---|
14 | A1.rv = RV({'theta','r'},[2,1]); |
---|
15 | A1.rgr = RVtimes([y,u],[-3,-1]) ; |
---|
16 | A1.log_level = 'logbounds'; |
---|
17 | A1.constant = 0; |
---|
18 | A1.name = 'A1'; |
---|
19 | |
---|
20 | Apri =A1; |
---|
21 | Apri.class = 'ARX'; |
---|
22 | DSpri = DS; |
---|
23 | DSpri.Data = DS.Data(:,1:6); |
---|
24 | % get decent prior -- estimate with data first |
---|
25 | [Dum,post]=estimator(DSpri,{Apri}); |
---|
26 | |
---|
27 | A1.prior = post.estimators{1}.posterior; |
---|
28 | |
---|
29 | % we have 2 parameters - i.e. 4 hypotheses |
---|
30 | |
---|
31 | %%%%%% Random walk on frg - Dirichlet |
---|
32 | walk.class = 'mDirich'; % random walk on coefficient phi |
---|
33 | walk.rv = RV({'phi'},4); % 2D random walk - frg is the first element |
---|
34 | walk.k = 0.001; % width of the random walk |
---|
35 | walk.betac = 0.1*ones(1,4); % stabilizing elememnt of random walk |
---|
36 | |
---|
37 | %%%%%% Particle |
---|
38 | p.class = 'MarginalizedParticle'; |
---|
39 | p.parameter_pdf = walk; % Random walk is the parameter evolution model |
---|
40 | p.bm = A1; |
---|
41 | |
---|
42 | % prior on ARX |
---|
43 | %%%%%% Combining estimators in Marginalized particle filter |
---|
44 | E.class = 'PF'; |
---|
45 | E.particle = p; % ARX is the analytical part |
---|
46 | E.res_threshold = 0.7; % resampling parameter |
---|
47 | E.n = 100; % number of particles |
---|
48 | E.prior.class = 'eBeta'; % prior on non-linear part |
---|
49 | E.prior.alpha = 5*ones(1,4); % |
---|
50 | E.prior.beta = ones(1,4); % |
---|
51 | E.log_level = 'logbounds,logweights'; |
---|
52 | E.name = 'MPF'; |
---|
53 | |
---|
54 | [M,Str]=estimator(DS,{E}); |
---|
55 | |
---|
56 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
57 | % plot results |
---|
58 | ndat = size(M.DS_dt_u,1); |
---|
59 | |
---|
60 | figure(1); |
---|
61 | subplot(2,2,1); |
---|
62 | plotestimates(true_theta, M.MPF_apost_mean_theta, M.MPF_apost_lbound_theta, M.MPF_apost_ubound_theta); |
---|
63 | title(' Regression parameters \theta') |
---|
64 | set(gca,'YLim',[-1.5,1]); |
---|
65 | |
---|
66 | subplot(2,2,2); |
---|
67 | plotestimates(true_R, M.MPF_apost_mean_r,M.MPF_apost_lbound_r,M.MPF_apost_ubound_r); |
---|
68 | title('Variance parameters r') |
---|
69 | |
---|
70 | subplot(2,2,3); |
---|
71 | plotestimates(1, M.MPF_apost_mean_phi(:,1),M.MPF_apost_lbound_phi(:,1),M.MPF_apost_ubound_phi(:,1)); |
---|
72 | title('Forgetting factor') |
---|
73 | |
---|
74 | |
---|