1 | \begin{thebibliography}{10} |
---|
2 | \providecommand{\url}[1]{\texttt{#1}} |
---|
3 | \providecommand{\urlprefix}{URL } |
---|
4 | \expandafter\ifx\csname urlstyle\endcsname\relax |
---|
5 | \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else |
---|
6 | \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup |
---|
7 | \urlstyle{rm}\Url}\fi |
---|
8 | \providecommand{\selectlanguage}[1]{\relax} |
---|
9 | \providecommand{\eprint}[2][]{\url{#2}} |
---|
10 | |
---|
11 | \bibitem{aimsunget} |
---|
12 | \emph{AIMSUN Getram v4.2 getting started - User's manual}. 2003. |
---|
13 | |
---|
14 | \bibitem{7_lq_methods} |
---|
15 | Anderson, M.~J., B.D.O.: Optimal Control - Linear Quadratic Methods. |
---|
16 | \emph{Prentice Hall, Englewood Cliffs, NJ}, 1990. |
---|
17 | |
---|
18 | \bibitem{dynamic_programming} |
---|
19 | Bellman, R.: Dynamic programming. \emph{Princeton University Press}, 1957. |
---|
20 | |
---|
21 | \bibitem{2_int_a_in_dec} |
---|
22 | Ferreira, E.; Subrahmanian, E.; Manstetten, D.: Intelligent agents in |
---|
23 | decentralized traffic control. \emph{Intelligent Transportation Systems}, |
---|
24 | 2001. |
---|
25 | |
---|
26 | \bibitem{4_rmm_formalization} |
---|
27 | Gmytrasiewicz, P.~J.; Durfee, E.~H.: A rigorous, operational formalization of |
---|
28 | recursive modeling. \emph{First International Conference on Multiagent |
---|
29 | Systems}, 1995. |
---|
30 | |
---|
31 | \bibitem{5_bayes_learn} |
---|
32 | Nagy, I.; Nedoma, P.; Ettler, P.; aj.: O bayesovsk{\'e}m u\v{c}en{\'i}. |
---|
33 | \emph{Automa}, 2002. |
---|
34 | |
---|
35 | \bibitem{1_rmm_bayes_learning} |
---|
36 | Ou, H.; Zhang, W.; Xu, X.: Urban traffic multi-agent system based on RMM and |
---|
37 | Bayesian learning. \emph{American Control Conference}, 2002. |
---|
38 | |
---|
39 | \bibitem{17_fronta} |
---|
40 | P., P.; J., D.; Fl{\'i}dr: Modelling and Simultaneous Estimation of State and |
---|
41 | Parameters of Traffic System. \emph{Robotics, Automation and Control}, 2008. |
---|
42 | |
---|
43 | \bibitem{learning_to_predict} |
---|
44 | Sutton, R.~S.: Learning to predict by the methods of temporal didffrences. |
---|
45 | \emph{Machine Learning}, 1988. |
---|
46 | |
---|
47 | \bibitem{tlc_using_sarsa} |
---|
48 | Thorpe, T.: Vehicle traffic light controlusing sarsa. \emph{Master’s thesis, |
---|
49 | Department of Computer Science, Colorado State University}, 1997. |
---|
50 | |
---|
51 | \bibitem{6_tuc_lq} |
---|
52 | Vaya~Dinopoulou, M.~P., Christina~Diakaki: Applications of the urban traffic |
---|
53 | control strategy TUC. \emph{European Journal of Operational Research}, 2005. |
---|
54 | |
---|
55 | \bibitem{leraning_from_delayed_rewards} |
---|
56 | Watkins, C. J. C.~H.: Leraning from Delayed Rewards. \emph{PhD thesis, King's |
---|
57 | College, Cambridge, England}, 1989. |
---|
58 | |
---|
59 | \bibitem{q_learning} |
---|
60 | Watkins, C. J. C.~H.; Dayan, P.: Q-leraning. \emph{Machine Learning}, 1992. |
---|
61 | |
---|
62 | \bibitem{3_i_traff_light_c} |
---|
63 | Wiering, M.; {Van Veenen}, J.; Vreeken, J.; aj.: Intelligent traffic light |
---|
64 | control. \emph{European Research Consortium for Informatics and Mathematics}, |
---|
65 | 2003. |
---|
66 | |
---|
67 | \bibitem{wooldridge} |
---|
68 | Wooldridge, M.: \emph{Multi Agent Systems}. MIT Press, Březen 2005. |
---|
69 | |
---|
70 | \end{thebibliography} |
---|