root/applications/doprava/texty/novotny_vyzk_LQ/vyzk.bbl @ 1439

Revision 1429, 2.7 kB (checked in by jabu, 13 years ago)

presunuti minimalizace do kapitoly o LQ rizeni

Line 
1\begin{thebibliography}{10}
2\providecommand{\url}[1]{\texttt{#1}}
3\providecommand{\urlprefix}{URL }
4\expandafter\ifx\csname urlstyle\endcsname\relax
5  \providecommand{\doi}[1]{doi:\discretionary{}{}{}#1}\else
6  \providecommand{\doi}{doi:\discretionary{}{}{}\begingroup
7  \urlstyle{rm}\Url}\fi
8\providecommand{\selectlanguage}[1]{\relax}
9\providecommand{\eprint}[2][]{\url{#2}}
10
11\bibitem{aimsunget}
12\emph{AIMSUN Getram v4.2 getting started - User's manual}. 2003.
13
14\bibitem{7_lq_methods}
15Anderson, M.~J., B.D.O.: Optimal Control - Linear Quadratic Methods.
16  \emph{Prentice Hall, Englewood Cliffs, NJ}, 1990.
17
18\bibitem{dynamic_programming}
19Bellman, R.: Dynamic programming. \emph{Princeton University Press}, 1957.
20
21\bibitem{2_int_a_in_dec}
22Ferreira, E.; Subrahmanian, E.; Manstetten, D.: Intelligent agents in
23  decentralized traffic control. \emph{Intelligent Transportation Systems},
24  2001.
25
26\bibitem{4_rmm_formalization}
27Gmytrasiewicz, P.~J.; Durfee, E.~H.: A rigorous, operational formalization of
28  recursive modeling. \emph{First International Conference on Multiagent
29  Systems}, 1995.
30
31\bibitem{5_bayes_learn}
32Nagy, I.; Nedoma, P.; Ettler, P.; aj.: O bayesovsk{\'e}m u\v{c}en{\'i}.
33  \emph{Automa}, 2002.
34
35\bibitem{1_rmm_bayes_learning}
36Ou, H.; Zhang, W.; Xu, X.: Urban traffic multi-agent system based on RMM and
37  Bayesian learning. \emph{American Control Conference}, 2002.
38
39\bibitem{17_fronta}
40Pecherkov{\'a}, P.; Dun{\'i}k, J.; Fl{\'i}dr, M.: Modelling and Simultaneous
41  Estimation of State and Parameters of Traffic System. \emph{Robotics,
42  Automation and Control}, 2008.
43
44\bibitem{lqg_parallel}
45Schier, J.: Parallel algorithms for Robust Adaptive Identification and
46  Square-Root LQG Controll Synthesis. 1994.
47
48\bibitem{learning_to_predict}
49Sutton, R.~S.: Learning to predict by the methods of temporal didffrences.
50  \emph{Machine Learning}, 1988.
51
52\bibitem{tlc_using_sarsa}
53Thorpe, T.: Vehicle traffic light controlusing sarsa. \emph{Master’s thesis,
54  Department of Computer Science, Colorado State University}, 1997.
55
56\bibitem{6_tuc_lq}
57Vaya~Dinopoulou, M.~P., Christina~Diakaki: Applications of the urban traffic
58  control strategy TUC. \emph{European Journal of Operational Research}, 2005.
59
60\bibitem{leraning_from_delayed_rewards}
61Watkins, C. J. C.~H.: Leraning from Delayed Rewards. \emph{PhD thesis, King's
62  College, Cambridge, England}, 1989.
63
64\bibitem{q_learning}
65Watkins, C. J. C.~H.; Dayan, P.: Q-leraning. \emph{Machine Learning}, 1992.
66
67\bibitem{3_i_traff_light_c}
68Wiering, M.; {Van Veenen}, J.; Vreeken, J.; aj.: Intelligent traffic light
69  control. \emph{European Research Consortium for Informatics and Mathematics},
70  2003.
71
72\bibitem{wooldridge}
73Wooldridge, M.: \emph{Multi Agent Systems}. MIT Press, Březen 2005.
74
75\end{thebibliography}
Note: See TracBrowser for help on using the browser.