root/applications/dual/IterativeLocal/pmsm_lqg.m @ 892

Revision 890, 3.9 kB (checked in by vahalam, 15 years ago)
Line 
1function pmsm_lqg
2% rizeni pmsm motoru - jednoduchy lqg algoritmus
3
4%nastaveni algortimu
5K = 1000; %casy
6
7N = 50; %vzorky
8It = 5; %iterace
9
10
11%konstanty modelu
12DELTAt = 0.000125;
13
14cRs = 0.28;
15cLs = 0.003465;
16cPSIpm = 0.1989;
17ckp = 1.5;
18cp = 4.0;
19cJ = 0.04;
20cB = 0;
21
22% a = 0.9898;
23% b = 0.0072;
24% c = 0.0361;
25% d = 1;
26% e = 0.0149;
27
28a = 1 - DELTAt*cRs/cLs;
29b = DELTAt*cPSIpm/cLs;
30c = DELTAt/cLs;
31d = 1 - DELTAt*cB/cJ;
32e = DELTAt*ckp*cp*cp*cPSIpm/cJ;
33
34OMEGAt = 1.0015;
35
36%penalizace vstupu a rizeni
37v = 0.0001;
38w = 1;
39
40%matice modelu
41A = [a 0 0 0;...
42     0 a 0 0;...
43     0 0 d 0;...
44     0 0 DELTAt 1];
45 
46B = DELTAt*[c 0;...
47            0 c;...
48            0 0;...
49            0 0];
50 
51% C = [1 0 0 0;...
52%      0 1 0 0];
53 
54X = [0 0 0 0;...
55     0 0 0 0;...
56     0 0 w 0;...
57     0 0 0 0];
58 
59Y = [v 0;...
60     0 v];
61 
62%pocatecni nastaveni
63Q = diag([0.0013, 0.0013, 5e-6, 1e-10]);
64R = diag([0.0006, 0.0006]);
65
66x0 = [0 0 1 pi/2];
67P = diag([0.01, 0.01, 0.01, 0.01]);
68
69%globalni promenne
70u = zeros(2, K);
71xs = zeros(4, K);
72xn = zeros(4, K, N);
73
74S = zeros(4, 4, K);
75L = zeros(2, 4, K);
76
77%zapinani a vypinani sumu, sumu v simulaci a generovani trajektorii s
78%rozptylem
79sum = 0;%1;%0.01;
80sumsim = 0;%1;%0.01;
81neznalost = 1;
82
83tic
84
85%hlavni iteracni smycka
86for iterace = 1:It,
87    %generovani stavu
88    for n = 1:N,
89        xn(:, 1, n) = x0' - [0 0 OMEGAt 0]' + neznalost*sqrtm(P)*randn(4,1);
90        for k = 1:K-1,
91           tu =  L(:, :, k)*(xn(:, k, n));
92           xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); 
93           xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn();
94           xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn();
95           xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sum*sqrt(Q(4, 4))*randn();
96        end
97    end
98   
99    %prumerny stav
100    xs = mean(xn, 3);
101   
102    %napocteni S a L
103    S(:, :, K) = X;
104    for k = K-1:-1:1,
105        A(3, 1) = -e*sin(xs(4, k));
106        A(3, 2) = e*cos(xs(4, k));
107        A(1, 3) = b*sin(xs(4, k));
108        A(2, 3) = -b*cos(xs(4, k));
109        A(1, 4) = b*xs(3, k)*cos(xs(4, k));
110        A(2, 4) = b*xs(3, k)*sin(xs(4, k));
111        A(3, 4) = -e*(xs(2, k)*sin(xs(4, k) + xs(1,k)*cos(xs(4, k))));
112        S(:, :, k) = A'*(S(:, :, k+1) - S(:, :, k+1)*B*inv(B'*S(:, :, k+1)*B + Y)*B'*S(:, :, k+1))*A + X;
113        L(:, :, k) = -inv(B'*S(:, :, k+1)*B + Y)*B'*S(:, :, k+1)*A;
114    end   
115end
116    toc
117
118%vysledky
119    clf
120    subplot(2, 3, 3);
121    hold all
122    plot(1:K, OMEGAt*ones(1,K));
123
124    for n = 1:N,
125        xn(:, 1, n) = x0' - [0 0 OMEGAt 0]' + neznalost*sqrtm(P)*randn(4,1);
126        for k = 1:K-1,
127           tu =  L(:, :, k)*(xn(:, k, n));
128           xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); 
129           xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn();
130           xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn();
131           xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn();
132           
133           u(:, k) = tu;
134        end
135       
136        xn(3, :, n) = xn(3, :, n) + OMEGAt*ones(1, K);
137       
138        subplot(2, 3, 1);
139        hold all
140        plot(1:K, xn(1, :, n));
141        title('i_{\alpha}');
142        subplot(2, 3, 2);
143        hold all
144        plot(1:K, xn(2, :, n));
145        title('i_{\beta}');
146        subplot(2, 3, 3);
147        hold all
148        plot(1:K, xn(3, :, n));
149        title('\omega');
150        subplot(2, 3, 4);
151        hold all
152        plot(1:K, xn(4, :, n));
153        title('\theta');
154        subplot(2, 3, 5);
155        hold all
156        plot(1:K, u(1, :));
157        title('u_{\alpha}');
158        subplot(2, 3, 6);
159        hold all
160        plot(1:K, u(2, :));
161        title('u_{\beta}');
162    end
163
164
165end
Note: See TracBrowser for help on using the browser.