root/applications/dual/IterativeLocal/pmsm_lqg.m @ 897

Revision 893, 5.3 kB (checked in by vahalam, 15 years ago)
Line 
1function pmsm_lqg
2% rizeni pmsm motoru - jednoduchy lqg algoritmus
3
4%nastaveni algortimu
5K = 10; %casy
6Kt = 100; %test casy
7
8N = 100; %vzorky
9It = 1; %iterace
10
11
12%konstanty modelu
13DELTAt = 0.000125;
14
15cRs = 0.28;
16cLs = 0.003465;
17cPSIpm = 0.1989;
18ckp = 1.5;
19cp = 4.0;
20cJ = 0.04;
21cB = 0;
22
23% a = 0.9898;
24% b = 0.0072;
25% c = 0.0361;
26% d = 1;
27% e = 0.0149;
28
29a = 1 - DELTAt*cRs/cLs;
30b = DELTAt*cPSIpm/cLs;
31c = DELTAt/cLs;
32d = 1 - DELTAt*cB/cJ;
33e = DELTAt*ckp*cp*cp*cPSIpm/cJ;
34
35OMEGAt = 1.0015;
36
37%penalizace vstupu a rizeni
38v = 0.00001;
39w = 1;
40
41%matice modelu
42A = [a 0 0 0;...
43     0 a 0 0;...
44     0 0 d 0;...
45     0 0 DELTAt 1];
46 
47B = [c 0;...
48            0 c;...
49            0 0;...
50            0 0];
51 
52% C = [1 0 0 0;...
53%      0 1 0 0];
54 
55X = [0 0 0 0;...
56     0 0 0 0;...
57     0 0 w 0;...
58     0 0 0 0];
59 
60Y = [v 0;...
61     0 v];
62 
63%pocatecni nastaveni
64Q = diag([0.0013, 0.0013, 5e-6, 1e-10]);
65R = diag([0.0006, 0.0006]);
66
67x0 = [0 0 1 pi/2];
68P = diag([0.01, 0.01, 0.01, 0.01]);
69
70%globalni promenne
71u = zeros(2, Kt);
72xs = zeros(4, Kt);
73xn = zeros(4, Kt, N);
74
75S = zeros(4, 4, K);
76L = zeros(2, 4, Kt);
77
78%zapinani a vypinani sumu, sumu v simulaci a generovani trajektorii s
79%rozptylem
80sum = 1;%0.01;
81sumsim = 1;%0.01;
82neznalost = 1;
83
84tic
85
86%hlavni iteracni smycka
87for iterace = 1:It,
88    %generovani stavu
89    for n = 1:N,
90        xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1);
91        for k = 1:Kt-1,
92           tu =  L(:, :, k)*(xn(:, k, n) - [0 0 OMEGAt 0]');
93           xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); 
94           xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn();
95           xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn();
96           xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn();           
97%            xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); 
98%            xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn();
99%            xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn();
100%            xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn();
101        end
102    end
103   
104    %prumerny stav
105    xs = mean(xn, 3);
106   
107    %napocteni S a L
108    for kt = 1:Kt-1,
109%     receding horizon
110     if((K-1+kt)<Kt)
111        S(:, :, K) = X;
112        for k = K-1+kt-1:-1:1+kt-1,
113            A(3, 1) = -e*sin(xs(4, k));
114            A(3, 2) = e*cos(xs(4, k));
115            A(1, 3) = b*sin(xs(4, k));
116            A(2, 3) = -b*cos(xs(4, k));
117            A(1, 4) = b*(xs(3, k))*cos(xs(4, k));
118            A(2, 4) = b*(xs(3, k))*sin(xs(4, k));
119%             A(1, 4) = b*(xs(3, k)+OMEGAt)*cos(xs(4, k));
120%             A(2, 4) = b*(xs(3, k)+OMEGAt)*sin(xs(4, k));
121            A(3, 4) = -e*(xs(2, k)*sin(xs(4, k) + xs(1,k)*cos(xs(4, k))));
122            S(:, :, k-kt+1) = A'*(S(:, :, k-kt+2) - S(:, :, k-kt+2)*B*inv(B'*S(:, :, k-kt+2)*B + Y)*B'*S(:, :, k-kt+2))*A + X;       
123        end 
124        L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A;
125     else
126        L(:, :, kt) = L(:, :, kt-1); %kopiruje poslednich K kroku z Kt kde to nejde na K predpocitat
127     end
128       
129    end
130end
131    toc
132
133%vysledky
134    clf
135    subplot(2, 3, 3);
136    hold all
137    plot(1:Kt, OMEGAt*ones(1,Kt));
138% L(:,:,1)
139    for n = 1:N,
140        xn(:, 1, n) = x0' + neznalost*sqrtm(P)*randn(4,1);
141        for k = 1:Kt-1,
142           tu =  L(:, :, 1)*(xn(:, k, n) - [0 0 OMEGAt 0]');
143           xn(1, k+1, n) = a*xn(1, k, n) + b*xn(3, k, n)*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); 
144           xn(2, k+1, n) = a*xn(2, k, n) - b*xn(3, k, n)*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn();
145           xn(3, k+1, n) = d*xn(3, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn();
146           xn(4, k+1, n) = xn(4, k, n) + xn(3, k, n)*DELTAt + sumsim*sqrt(Q(4, 4))*randn();
147%            xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n)+OMEGAt)*sin(xn(4, k, n)) + c*tu(1) + sum*sqrt(Q(1, 1))*randn(); 
148%            xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n)+OMEGAt)*cos(xn(4, k, n)) + c*tu(2) + sum*sqrt(Q(2, 2))*randn();
149%            xn(3, k+1, n) = -OMEGAt + d*(xn(3, k, n)+OMEGAt) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sum*sqrt(Q(3, 3))*randn();
150%            xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n)+OMEGAt)*DELTAt + sum*sqrt(Q(4, 4))*randn();
151           
152           u(:, k) = tu;         
153        end
154       
155%         xn(3, :, n) = xn(3, :, n) + OMEGAt*ones(1, Kt);
156       
157        subplot(2, 3, 1);
158        hold all
159        plot(1:Kt, xn(1, :, n));
160        title('i_{\alpha}');
161        subplot(2, 3, 2);
162        hold all
163        plot(1:Kt, xn(2, :, n));
164        title('i_{\beta}');
165        subplot(2, 3, 3);
166        hold all
167        plot(1:Kt, xn(3, :, n));
168        title('\omega');
169        subplot(2, 3, 4);
170        hold all
171        plot(1:Kt, xn(4, :, n));
172        title('\theta');
173        subplot(2, 3, 5);
174        hold all
175        plot(1:Kt, u(1, :));
176        title('u_{\alpha}');
177        subplot(2, 3, 6);
178        hold all
179        plot(1:Kt, u(2, :));
180        title('u_{\beta}');
181    end
182
183
184end
Note: See TracBrowser for help on using the browser.