| 1 | function pmsm_lqg |
|---|
| 2 | % rizeni pmsm motoru - jednoduchy lqg algoritmus |
|---|
| 3 | |
|---|
| 4 | %nastaveni algortimu |
|---|
| 5 | K = 10; %casy |
|---|
| 6 | Kt = 100; %test casy |
|---|
| 7 | |
|---|
| 8 | N = 50; %vzorky |
|---|
| 9 | It = 1; %iterace |
|---|
| 10 | |
|---|
| 11 | |
|---|
| 12 | %konstanty modelu |
|---|
| 13 | DELTAt = 0.000125; |
|---|
| 14 | |
|---|
| 15 | cRs = 0.28; |
|---|
| 16 | cLs = 0.003465; |
|---|
| 17 | cPSIpm = 0.1989; |
|---|
| 18 | ckp = 1.5; |
|---|
| 19 | cp = 4.0; |
|---|
| 20 | cJ = 0.04; |
|---|
| 21 | cB = 0; |
|---|
| 22 | |
|---|
| 23 | % a = 0.9898; |
|---|
| 24 | % b = 0.0072; |
|---|
| 25 | % c = 0.0361; |
|---|
| 26 | % d = 1; |
|---|
| 27 | % e = 0.0149; |
|---|
| 28 | |
|---|
| 29 | a = 1 - DELTAt*cRs/cLs; |
|---|
| 30 | b = DELTAt*cPSIpm/cLs; |
|---|
| 31 | c = DELTAt/cLs; |
|---|
| 32 | d = 1 - DELTAt*cB/cJ; |
|---|
| 33 | e = DELTAt*ckp*cp*cp*cPSIpm/cJ; |
|---|
| 34 | |
|---|
| 35 | OMEGAt = 1.15;%1.0015; |
|---|
| 36 | |
|---|
| 37 | %penalizace vstupu a rizeni |
|---|
| 38 | v = 0.000001;%0.000001; |
|---|
| 39 | w = 1; |
|---|
| 40 | |
|---|
| 41 | %matice modelu |
|---|
| 42 | A = [a 0 0 0 0;... |
|---|
| 43 | 0 a 0 0 0;... |
|---|
| 44 | 0 0 d 0 (d-1);... |
|---|
| 45 | 0 0 DELTAt 1 DELTAt;... |
|---|
| 46 | 0 0 0 0 1]; |
|---|
| 47 | |
|---|
| 48 | B = [c 0;... |
|---|
| 49 | 0 c;... |
|---|
| 50 | 0 0;... |
|---|
| 51 | 0 0;... |
|---|
| 52 | 0 0]; |
|---|
| 53 | |
|---|
| 54 | % C = [1 0 0 0;... |
|---|
| 55 | % 0 1 0 0]; |
|---|
| 56 | |
|---|
| 57 | X = [0 0 0 0 0;... |
|---|
| 58 | 0 0 0 0 0;... |
|---|
| 59 | 0 0 w 0 0;... |
|---|
| 60 | 0 0 0 0 0;... |
|---|
| 61 | 0 0 0 0 0]; |
|---|
| 62 | |
|---|
| 63 | Y = [v 0;... |
|---|
| 64 | 0 v]; |
|---|
| 65 | |
|---|
| 66 | %pocatecni nastaveni |
|---|
| 67 | Q = diag([0.0013, 0.0013, 5e-6, 1e-10]); |
|---|
| 68 | R = diag([0.0006, 0.0006]); |
|---|
| 69 | |
|---|
| 70 | x0 = [0 0 1.0-OMEGAt pi/2 OMEGAt]; |
|---|
| 71 | P = diag([0.01, 0.01, 0.01, 0.01, 0]); |
|---|
| 72 | |
|---|
| 73 | %globalni promenne |
|---|
| 74 | u = zeros(2, Kt+K); |
|---|
| 75 | xs = zeros(5, Kt+K); |
|---|
| 76 | xn = zeros(5, Kt+K, N); |
|---|
| 77 | |
|---|
| 78 | S = zeros(5, 5, K); |
|---|
| 79 | L = zeros(2, 5, Kt+K); |
|---|
| 80 | |
|---|
| 81 | %zapinani a vypinani sumu, sumu v simulaci a generovani trajektorii s |
|---|
| 82 | %rozptylem |
|---|
| 83 | % sum = 1;%0.01; |
|---|
| 84 | sumsim = 1;%0.01; |
|---|
| 85 | neznalost = 1; |
|---|
| 86 | |
|---|
| 87 | % vycisti kreslici okno |
|---|
| 88 | clf |
|---|
| 89 | subplot(2, 3, 3); |
|---|
| 90 | hold all |
|---|
| 91 | plot(1:Kt, OMEGAt*ones(1,Kt)); |
|---|
| 92 | |
|---|
| 93 | tic |
|---|
| 94 | |
|---|
| 95 | % vzorky stavu |
|---|
| 96 | for n = 1:N, |
|---|
| 97 | L = zeros(2, 5, Kt+K); |
|---|
| 98 | %iterace |
|---|
| 99 | % for iterace = 1:It, |
|---|
| 100 | x00 = x0' + neznalost*sqrt(P)*randn(5,1); |
|---|
| 101 | %testovaci casy |
|---|
| 102 | for kt = 1:Kt, |
|---|
| 103 | %generovani stavu - jen pro horizont |
|---|
| 104 | xn(:, 1, n) = x00; |
|---|
| 105 | for k = 1:kt+K-1, |
|---|
| 106 | tu = L(:, :, k)*(xn(:, k, n)); |
|---|
| 107 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
|---|
| 108 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
|---|
| 109 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
|---|
| 110 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
|---|
| 111 | xn(5, k+1, n) = xn(5, k, n); |
|---|
| 112 | end |
|---|
| 113 | %prumerny stav |
|---|
| 114 | xs = xn(:, :, n);%mean(xn, 3); |
|---|
| 115 | |
|---|
| 116 | %receding horizon |
|---|
| 117 | S(:, :, K) = X; |
|---|
| 118 | for k = K:-1:2, |
|---|
| 119 | A(3, 1) = -e*sin(xs(4, k+kt-1)); |
|---|
| 120 | A(3, 2) = e*cos(xs(4, k+kt-1)); |
|---|
| 121 | A(1, 3) = b*sin(xs(4, k+kt-1)); |
|---|
| 122 | A(2, 3) = -b*cos(xs(4, k+kt-1)); |
|---|
| 123 | A(1, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*cos(xs(4, k+kt-1)); |
|---|
| 124 | A(2, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*sin(xs(4, k+kt-1)); |
|---|
| 125 | A(3, 4) = -e*(xs(2, k+kt-1)*sin(xs(4, k+kt-1) + xs(1,k+kt-1)*cos(xs(4, k+kt-1)))); |
|---|
| 126 | A(1, 5) = b*sin(xs(4, k+kt-1)); |
|---|
| 127 | A(2, 5) = -b*cos(xs(4, k+kt-1)); |
|---|
| 128 | S(:, :, k-1) = A'*(S(:, :, k) - S(:, :, k)*B*inv(B'*S(:, :, k)*B + Y)*B'*S(:, :, k))*A + X; |
|---|
| 129 | end |
|---|
| 130 | L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A; |
|---|
| 131 | %spocital kt-te rizeni a vsechna dalsi nahradi jim |
|---|
| 132 | for k = kt+1:kt+K-1, |
|---|
| 133 | L(:, :, k) = L(:, :, kt); |
|---|
| 134 | end |
|---|
| 135 | end |
|---|
| 136 | |
|---|
| 137 | % end |
|---|
| 138 | %napocte trajektorii pro vykresleni s kompletnim rizenim |
|---|
| 139 | xn(:, 1, n) = x00; |
|---|
| 140 | for k = 1:Kt+K-1, |
|---|
| 141 | u(:, k) = L(:, :, k)*(xn(:, k, n)); |
|---|
| 142 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*u(1, k) + sumsim*sqrt(Q(1, 1))*randn(); |
|---|
| 143 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*u(2, k) + sumsim*sqrt(Q(2, 2))*randn(); |
|---|
| 144 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
|---|
| 145 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
|---|
| 146 | xn(5, k+1, n) = xn(5, k, n); |
|---|
| 147 | end |
|---|
| 148 | |
|---|
| 149 | |
|---|
| 150 | %vykresleni |
|---|
| 151 | subplot(2, 3, 1); |
|---|
| 152 | hold all |
|---|
| 153 | plot(1:Kt, xn(1, 1:Kt, n)); |
|---|
| 154 | title('i_{\alpha}'); |
|---|
| 155 | subplot(2, 3, 2); |
|---|
| 156 | hold all |
|---|
| 157 | plot(1:Kt, xn(2, 1:Kt, n)); |
|---|
| 158 | title('i_{\beta}'); |
|---|
| 159 | subplot(2, 3, 3); |
|---|
| 160 | hold all |
|---|
| 161 | plot(1:Kt, xn(3, 1:Kt, n) + xn(5, 1:Kt, n)); |
|---|
| 162 | title('\omega'); |
|---|
| 163 | subplot(2, 3, 4); |
|---|
| 164 | hold all |
|---|
| 165 | plot(1:Kt, xn(4, 1:Kt, n)); |
|---|
| 166 | title('\theta'); |
|---|
| 167 | subplot(2, 3, 5); |
|---|
| 168 | hold all |
|---|
| 169 | plot(1:Kt, u(1, 1:Kt)); |
|---|
| 170 | title('u_{\alpha}'); |
|---|
| 171 | subplot(2, 3, 6); |
|---|
| 172 | hold all |
|---|
| 173 | plot(1:Kt, u(2, 1:Kt)); |
|---|
| 174 | title('u_{\beta}'); |
|---|
| 175 | end |
|---|
| 176 | |
|---|
| 177 | toc |
|---|
| 178 | |
|---|
| 179 | end |
|---|