1 | function pmsm_lqg |
---|
2 | % rizeni pmsm motoru - jednoduchy lqg algoritmus |
---|
3 | |
---|
4 | %nastaveni algortimu |
---|
5 | K = 10; %casy |
---|
6 | Kt = 100; %test casy |
---|
7 | |
---|
8 | N = 50; %vzorky |
---|
9 | It = 1; %iterace |
---|
10 | |
---|
11 | |
---|
12 | %konstanty modelu |
---|
13 | DELTAt = 0.000125; |
---|
14 | |
---|
15 | cRs = 0.28; |
---|
16 | cLs = 0.003465; |
---|
17 | cPSIpm = 0.1989; |
---|
18 | ckp = 1.5; |
---|
19 | cp = 4.0; |
---|
20 | cJ = 0.04; |
---|
21 | cB = 0; |
---|
22 | |
---|
23 | % a = 0.9898; |
---|
24 | % b = 0.0072; |
---|
25 | % c = 0.0361; |
---|
26 | % d = 1; |
---|
27 | % e = 0.0149; |
---|
28 | |
---|
29 | a = 1 - DELTAt*cRs/cLs; |
---|
30 | b = DELTAt*cPSIpm/cLs; |
---|
31 | c = DELTAt/cLs; |
---|
32 | d = 1 - DELTAt*cB/cJ; |
---|
33 | e = DELTAt*ckp*cp*cp*cPSIpm/cJ; |
---|
34 | |
---|
35 | OMEGAt = 1.15;%1.0015; |
---|
36 | |
---|
37 | %penalizace vstupu a rizeni |
---|
38 | v = 0.000001;%0.000001; |
---|
39 | w = 1; |
---|
40 | |
---|
41 | %matice modelu |
---|
42 | A = [a 0 0 0 0;... |
---|
43 | 0 a 0 0 0;... |
---|
44 | 0 0 d 0 (d-1);... |
---|
45 | 0 0 DELTAt 1 DELTAt;... |
---|
46 | 0 0 0 0 1]; |
---|
47 | |
---|
48 | B = [c 0;... |
---|
49 | 0 c;... |
---|
50 | 0 0;... |
---|
51 | 0 0;... |
---|
52 | 0 0]; |
---|
53 | |
---|
54 | % C = [1 0 0 0;... |
---|
55 | % 0 1 0 0]; |
---|
56 | |
---|
57 | X = [0 0 0 0 0;... |
---|
58 | 0 0 0 0 0;... |
---|
59 | 0 0 w 0 0;... |
---|
60 | 0 0 0 0 0;... |
---|
61 | 0 0 0 0 0]; |
---|
62 | |
---|
63 | Y = [v 0;... |
---|
64 | 0 v]; |
---|
65 | |
---|
66 | %pocatecni nastaveni |
---|
67 | Q = diag([0.0013, 0.0013, 5e-6, 1e-10]); |
---|
68 | R = diag([0.0006, 0.0006]); |
---|
69 | |
---|
70 | x0 = [0 0 1.0-OMEGAt pi/2 OMEGAt]; |
---|
71 | P = diag([0.01, 0.01, 0.01, 0.01, 0]); |
---|
72 | |
---|
73 | %globalni promenne |
---|
74 | u = zeros(2, Kt+K); |
---|
75 | xs = zeros(5, Kt+K); |
---|
76 | xn = zeros(5, Kt+K, N); |
---|
77 | |
---|
78 | S = zeros(5, 5, K); |
---|
79 | L = zeros(2, 5, Kt+K); |
---|
80 | |
---|
81 | %zapinani a vypinani sumu, sumu v simulaci a generovani trajektorii s |
---|
82 | %rozptylem |
---|
83 | % sum = 1;%0.01; |
---|
84 | sumsim = 1;%0.01; |
---|
85 | neznalost = 1; |
---|
86 | |
---|
87 | errnans = 0; |
---|
88 | |
---|
89 | % vycisti kreslici okno |
---|
90 | clf |
---|
91 | subplot(2, 3, 3); |
---|
92 | hold all |
---|
93 | plot(1:Kt, OMEGAt*ones(1,Kt)); |
---|
94 | |
---|
95 | tic |
---|
96 | |
---|
97 | % vzorky stavu |
---|
98 | for n = 1:N, |
---|
99 | L = zeros(2, 5, Kt+K); |
---|
100 | %iterace |
---|
101 | % for iterace = 1:It, |
---|
102 | x00 = x0' + neznalost*sqrt(P)*randn(5,1); |
---|
103 | %testovaci casy |
---|
104 | for kt = 1:Kt, |
---|
105 | %generovani stavu - jen pro horizont |
---|
106 | xn(:, 1, n) = x00; |
---|
107 | for k = 1:kt+K-1, |
---|
108 | tu = L(:, :, k)*(xn(:, k, n)); |
---|
109 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*tu(1) + sumsim*sqrt(Q(1, 1))*randn(); |
---|
110 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*tu(2) + sumsim*sqrt(Q(2, 2))*randn(); |
---|
111 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
---|
112 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
---|
113 | xn(5, k+1, n) = xn(5, k, n); |
---|
114 | end |
---|
115 | %prumerny stav |
---|
116 | xs = xn(:, :, n);%mean(xn, 3); |
---|
117 | |
---|
118 | %receding horizon |
---|
119 | S(:, :, K) = X; |
---|
120 | for k = K:-1:2, |
---|
121 | A(3, 1) = -e*sin(xs(4, k+kt-1)); |
---|
122 | A(3, 2) = e*cos(xs(4, k+kt-1)); |
---|
123 | A(1, 3) = b*sin(xs(4, k+kt-1)); |
---|
124 | A(2, 3) = -b*cos(xs(4, k+kt-1)); |
---|
125 | A(1, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*cos(xs(4, k+kt-1)); |
---|
126 | A(2, 4) = b*(xs(3, k+kt-1) + xs(5, k+kt-1))*sin(xs(4, k+kt-1)); |
---|
127 | A(3, 4) = -e*(xs(2, k+kt-1)*sin(xs(4, k+kt-1) + xs(1,k+kt-1)*cos(xs(4, k+kt-1)))); |
---|
128 | A(1, 5) = b*sin(xs(4, k+kt-1)); |
---|
129 | A(2, 5) = -b*cos(xs(4, k+kt-1)); |
---|
130 | S(:, :, k-1) = A'*(S(:, :, k) - S(:, :, k)*B*inv(B'*S(:, :, k)*B + Y)*B'*S(:, :, k))*A + X; |
---|
131 | end |
---|
132 | L(:, :, kt) = -inv(B'*S(:, :, 1)*B + Y)*B'*S(:, :, 1)*A; |
---|
133 | %spocital kt-te rizeni a vsechna dalsi nahradi jim |
---|
134 | for k = kt+1:kt+K-1, |
---|
135 | L(:, :, k) = L(:, :, kt); |
---|
136 | end |
---|
137 | end |
---|
138 | |
---|
139 | % end |
---|
140 | %napocte trajektorii pro vykresleni s kompletnim rizenim |
---|
141 | xn(:, 1, n) = x00; |
---|
142 | for k = 1:Kt+K-1, |
---|
143 | u(:, k) = L(:, :, k)*(xn(:, k, n)); %tady se vyuzije(k) / nevyuzije(1) receding horizon |
---|
144 | xn(1, k+1, n) = a*xn(1, k, n) + b*(xn(3, k, n) + xn(5, k, n))*sin(xn(4, k, n)) + c*u(1, k) + sumsim*sqrt(Q(1, 1))*randn(); |
---|
145 | xn(2, k+1, n) = a*xn(2, k, n) - b*(xn(3, k, n) + xn(5, k, n))*cos(xn(4, k, n)) + c*u(2, k) + sumsim*sqrt(Q(2, 2))*randn(); |
---|
146 | xn(3, k+1, n) = d*xn(3, k, n) + (d-1)*xn(5, k, n) + e*(xn(2, k, n)*cos(xn(4, k, n)) - xn(1, k, n)*sin(xn(4, k, n))) + sumsim*sqrt(Q(3, 3))*randn(); |
---|
147 | xn(4, k+1, n) = xn(4, k, n) + (xn(3, k, n) + xn(5, k, n))*DELTAt + sumsim*sqrt(Q(4, 4))*randn(); |
---|
148 | xn(5, k+1, n) = xn(5, k, n); |
---|
149 | end |
---|
150 | |
---|
151 | %kontrola spatne L matice |
---|
152 | lstore(:,:,n) = L(:,:,1); |
---|
153 | if(isnan(sum(sum(L(:,:,1))))==1) |
---|
154 | errnans = errnans + 1; |
---|
155 | end |
---|
156 | |
---|
157 | %vykresleni |
---|
158 | subplot(2, 3, 1); |
---|
159 | hold all |
---|
160 | plot(1:Kt, xn(1, 1:Kt, n)); |
---|
161 | title('i_{\alpha}'); |
---|
162 | subplot(2, 3, 2); |
---|
163 | hold all |
---|
164 | plot(1:Kt, xn(2, 1:Kt, n)); |
---|
165 | title('i_{\beta}'); |
---|
166 | subplot(2, 3, 3); |
---|
167 | hold all |
---|
168 | plot(1:Kt, xn(3, 1:Kt, n) + xn(5, 1:Kt, n)); |
---|
169 | title('\omega'); |
---|
170 | subplot(2, 3, 4); |
---|
171 | hold all |
---|
172 | plot(1:Kt, xn(4, 1:Kt, n)); |
---|
173 | title('\theta'); |
---|
174 | subplot(2, 3, 5); |
---|
175 | hold all |
---|
176 | plot(1:Kt, u(1, 1:Kt)); |
---|
177 | title('u_{\alpha}'); |
---|
178 | subplot(2, 3, 6); |
---|
179 | hold all |
---|
180 | plot(1:Kt, u(2, 1:Kt)); |
---|
181 | title('u_{\beta}'); |
---|
182 | end |
---|
183 | |
---|
184 | toc |
---|
185 | |
---|
186 | if(errnans > 0) |
---|
187 | lstore |
---|
188 | disp('L is NaN') |
---|
189 | errnans |
---|
190 | end |
---|
191 | |
---|
192 | |
---|
193 | |
---|
194 | |
---|
195 | end |
---|