root/applications/dual/SIDP/bakalarka/SIDP/text/prezentace/Prezentace.tex @ 1351

Revision 1351, 7.7 kB (checked in by zimamiro, 13 years ago)
Line 
1\documentclass{beamer}
2\usepackage[czech]{babel}      % �ky psan�r�
3\usepackage[T1]{fontenc}
4\usepackage[cp1250]{inputenc}  % vstupn�nakov�ada: Windows 1250
5
6\usepackage{amsmath} % bal�k pro pokro�ou matem. sazbu
7\usepackage{algorithm}
8\usepackage{algorithmic}
9\DeclareMathOperator*{\E}{E}
10\DeclareMathOperator*{\cov}{Cov}
11\DeclareMathOperator*{\tr}{tr}
12
13\usetheme{Berlin}
14\title{Stochastick�terativn�proximace dynamick� programov� (SIDP)}
15\author{Miroslav Zima}
16\institute{FJFI �UT}
17\date{1. z� 2010}
18
19\begin{document}
20
21\begin{frame}
22\titlepage
23\end{frame}
24
25
26
27\begin{frame}
28\frametitle{Obsah}
29\tableofcontents
30\end{frame}
31
32
33\section{�oha ��a neur�osti}
34\begin{frame}{Syst�
35\begin{itemize}[<+->]
36
37\item Syst� jeho odezva na vstup $u_t$ p�alizaci �umu $v_{t+1}$
38\begin{equation}
39y_{t+1}=h_t(I_t,u_t,v_{t+1},\theta), \qquad t=0,\ldots,N-1,
40\end{equation}
41kde $I_t=(y_{t:0},u_{t-1:0})$ a $\theta$ je nezn� parametr. Zn� $I_0$, rozd�n�umu $v_t$ a apriorn�nformaci $f(\theta|T_0)$.
42
43\item Bayesovsk��� z�� aposteriorn�ustoty $f(\theta|T_{t+1})$
44\begin{equation}
45f(\theta|T_{t+1}) = \frac{f(y_{t+1} | \theta, I_t,u_t) f(\theta| T_t)}
46{\int f(y_{t+1} | \theta, I_t,u_t) f(\theta| T_t)\mathrm{d}\theta}.
47\end{equation}
48
49\item Hyperstav $H_t=(I_t,T_t)$ plat�\begin{equation}
50H_{t+1}=f_t(H_t,u_t,y_{t+1}), \qquad  t=0,\ldots,N-1.
51\end{equation} 
52
53\end{itemize}
54\end{frame}
55
56\begin{frame}{Formulace �}
57\begin{itemize}[<+->]
58
59
60\item Ztr�v�unkce (ur�e kvalitu ��
61\begin{equation}
62g(y_{1:N},u_{0:N-1})=\sum_{t=0}^{N-1}g_t(y_{t+1},u_t).
63\end{equation}
64
65\item �d� strategie
66\begin{equation}
67\mu_t(H_t)=u_t, \qquad t=0,1,\ldots,N-1.
68\end{equation}
69
70\item Hled� $\pi=\mu_{0:N-1}$ minimalizuj� o��nou ztr�
71\begin{equation}
72J_\pi=\E_{\theta_0,v_{0:N-1}}\left\{\sum_{t=0}^{N-1}g_t(y_{t+1},\mu_t(H_t))\right\},
73\end{equation}
74\end{itemize}
75\end{frame}
76
77\begin{frame}{Pou�it�ynamick� programov� p��en�lohy �� aditivn�tr�u}
78
79\begin{itemize}[<+->]
80
81\item Princip optimality $\implies$ postupn�d konce �� horizontu minimalizujeme d����n�tr�
82\begin{gather}
83J_N(H_N)=0,\\
84J_t(H_t)=\min_{u_t \in U_t}\E_{y_{t+1}}\left\{g_t(y_{t+1},u_t)+J_{t+1}(H_{t+1})|H_t,u_t\right\},
85\end{gather}
86podm�y: $y_{t+1}=h_t(I_t,u_t,v_{t+1},\theta)$ a $H_{t+1}=f_t(H_t,u_t,y_{t+1})$ 
87
88\item Probl� v ��\begin{itemize}
89\item v� st� hodnoty
90\item minimalizace vzhledem k $u_t$
91\item Analytick�e�en�bvykle nejde nal�  $\implies$ aproxima� metody.
92\end{itemize}
93\end{itemize}
94\end{frame}
95
96\section{Suboptim���p k ��omoc�IDP}
97\begin{frame}{SIDP}
98
99\begin{itemize}[<+->]
100\item Iterativn�ynamick�rogramov�
101\begin{itemize}
102\item {Nam�o p�o nalezen�\pi$ konstruujeme $\pi_n \to \pi$}
103\end{itemize}
104
105\item Stochastick�proximace $=$ Metoda Monte Carlo
106\begin{itemize}
107\item O��n�tr� se aproximuje pr�m z $n$ realizac�tr�
108\item Generov� realizace ztr� pro konkr��od $H_t$ 
109\begin{enumerate}
110\item \label{po} generujeme $v_t$ a $\theta$ (pou�ijeme $f(\theta,T_t)$)
111\item aplikac��c� z�hu z�� $y_{t+1}=h_t(I_t,u_t,v_{t+1},\theta)$ 
112\item k dosavadn�tr� p�me $g_t(y_{t+1},u_t)$
113\item dopo�� $H_{t+1}=f_t(H_t,u_t,y_{t+1})$
114\item interpolac�xtrapolac�\pi_n$ ur�e optim���h pro $H_{t+1}$
115\item pokud $t<N-1 \implies$ \ref{po}.
116\end{enumerate}
117\end{itemize}
118\end{itemize}
119\end{frame}
120
121\section{Srovn� SIDP s jin�todami} 
122\begin{frame}{Integr�r s nezn�m ziskem}
123\begin{itemize}[<+->]
124
125\item V�syst�
126\begin{equation}
127y_{t+1}=y_t+\theta u_t+v_{t+1}, \qquad t=0,\ldots,N-1,
128\end{equation}
129kde $\theta\neq0$ nezn�,  �um $v_{t+1}\sim N(0,0.1)$ a $y_0=1$.
130
131\item Ztr�v�unkce je kvadratick�\begin{equation}
132g(y_{1:N},u_{0:N-1})=\sum_{t=0}^{N-1}y_{t+1}^2.
133\end{equation}
134
135\item P�klad $\cov(v_{t+1},\theta_t)=0$ a $T_0=(\hat{\theta}_0,P_0)$ $\implies$ lze z�at konkr��var rce $H_{t+1}=f_t(H_t,u_t,y_{t+1})$.
136\item Hyperstav syst� $H_t$ tvo�ktor $(y_t,\hat{\theta}_t,P_t)$ (lze ho vhodnou transformaci redukovat na dim=2).
137\end{itemize}
138\end{frame}
139
140\begin{frame}{Konkuren� metody}
141\begin{itemize}[<+->]
142
143\item Certainty equivalence (CEC)
144\begin{itemize}
145
146\item pro n�h �� z�hu je br�bodov�d $\hat{\theta}$
147\item je mo�n��at analytick�yj�en�ro optim���c��h
148\end{itemize}
149
150\item Cautious control (CC)
151\begin{itemize}
152
153\item hled�e optim���n�a horizontu d�y $N=1$
154\item je mo�n��at analytick�yj�en�ro optim���c��h
155\end{itemize}
156
157\item Klasick�rick�tup k  dynamick� programov� (DP)
158\begin{itemize}
159\item Pro v� st� hodnoty je pou�ita Simpsonova metoda
160\item K minimalizaci ztr� slou��ednoduch�nterpola� metoda.
161\end{itemize}
162
163\end{itemize}
164\end{frame}
165
166\begin{frame}{Kvantitativn�rovn�}
167\begin{itemize}
168
169\item Dosa�en�tr� - pr�p�000 simulac�\item $\theta$ = prvn�enulov�ealizace veli�y s rozd�n�$N(\hat{\theta}_0,P_0)$
170\end{itemize}
171
172\begin{figure}
173\centering
174\begin{minipage}[c]{0.49\textwidth}
175\centering
176\includegraphics[width=\textwidth]{N=10,P=10}
177\end{minipage}
178\begin{minipage}[c]{0.49\textwidth}
179\begin{itemize}
180\item Metoda CEC neposkytuje pou�iteln��n�
181\item Metoda CC funguje pouze p�hat{\theta}_0 \neq 0$. Tehdy dosahuje nejni���tr�.
182\item SIDP a DP dob�d��dy. P�p��o�e� identifikaci m�IDP hor���y (diskretizace).
183\end{itemize}
184\end{minipage}
185\end{figure}
186\end{frame}
187
188
189\begin{frame}{Kvalitativn�rovn� SIDP a DP}
190\begin{itemize}
191\item �tnost konkr�� realizac�tr� - 1000 simulac�
192\end{itemize}
193
194\begin{figure}
195\centering
196\begin{minipage}[c]{0.49\textwidth}
197\centering
198\includegraphics[width=\textwidth]{SIDP4}
199\end{minipage}
200\begin{minipage}[c]{0.49\textwidth}
201\centering
202\includegraphics[width=\textwidth]{DP4}
203\end{minipage}
204\end{figure}
205
206\begin{itemize}
207
208\item SIDP se vyh�razn�patn� ��$>10$)
209\item DP �t� nab����elkov�tr� ($<1$)
210\item SIDP navrhuje opatrn���hy $\implies$ pomalej��dentifikace $\theta$
211\end{itemize}
212\end{frame}
213
214\begin{frame}{Test robustnosti}
215\begin{itemize}
216
217\item Dosa�en�tr� vhledem k apriorn�nformaci - 1000 simulac�
218\item $\theta$ = prvn�enulov�ealizace n�dn�eli�y s rozd�n�$N(1,10)$, r�apriorn�nformace na $\hat{\theta}_0$, rozptyl $P_0=10$.
219\end{itemize}
220
221\begin{figure}
222\centering
223\begin{minipage}[c]{0.49\textwidth}
224\centering
225\includegraphics[width=\textwidth]{rob}
226\end{minipage}
227\begin{minipage}[c]{0.49\textwidth}
228\begin{itemize}
229\item Vy���dolnost metody SIDP v�patn�priorn�nformaci
230\item SIDP poskytuje dobr��n� pro $\hat{\theta}_0=-10$, p� skute� $\theta=1$
231\end{itemize}
232\end{minipage}
233\end{figure}
234\end{frame}
235
236
237\begin{frame}{Z�r}
238\begin{itemize}[<+->]
239
240\item P�ty BP
241\begin{itemize}
242\item �oha ��a neur�osti - teoretick�e�en�omoc�ynamick� programov�
243\item Algoritmus SIDP jako mo�n�proxima� metoda
244\item Implementace SIDP pro ��ednoduch� syst�, porovn� s dal�� metodami
245\end{itemize}
246\item Mo�n�al��r�
247\begin{itemize}
248\item Navrhnout algoritmus, kter�yl m� v�n��� a st� poskytoval dobr��n�\item nap�_t=u^{(1)}_t+u^{(2)}_t$, kde $u^{(1)}_t$ minimalizuje ztr� (nap�d CC) a $u^{(2)}_t$ bud�yst�za �m jeho lep��dentifikace (pou�it�IDP).
249\end{itemize}
250\end{itemize}
251\end{frame}
252
253\begin{frame}
254\huge{D�ji za pozornost}
255\end{frame}
256
257\end{document}
Note: See TracBrowser for help on using the browser.