root/applications/dual/SIDP/text/ch2.tex @ 892

Revision 891, 8.7 kB (checked in by zimamiro, 15 years ago)
Line 
1P�likaci matematick� modelov� na ���k�onkr��lohy se obvykle pot�s probl�m, jak ur� konstanty, kter�an�l ur��Zkoum�-li nap�d n�k�k��yst� z rozboru fyzik�� z�nitost�bvykle zn� tvar rovnic, kter�r��eho v� �e, nicm� po�e� podm�y �parametry, kter� rovnic� vystupuj� jsou pro dan��charakteristick�m� z�at pouze nep� obvykle m�n�vhodn�li�. Modifikac�lohy stochastick� ��ro p� p�nosti nezn�ch parametr�zab�to kapitola.
2
3\section{Formulace � stochastick� �� nep�mi daty}
4Informace o stavu syst� $x_t$ v �e $t$ z��me pomoc�� $y_t$, kter��jako
5\begin{equation}
6\label{poz}
7y_0=h_0(x_0,v_0),\qquad y_t=h_t(x_t,u_{t-1},v_t), \qquad t=1,\ldots,N-1,
8\end{equation}
9kde $v_t$ je n�dn�eli�a charakterizuj� chybu m�n�Po�e� stav $x_0$ je d�rozd�n�pravd�dobnosti $P^{x_0}$ a dal���yst� ur�e soustava \eqref{sys}.
10
11Informace, kter�sou v pr� �� dispozici je zvykem ps�ve form�zv. \emph{informa�ho vektoru}, kter�var
12\begin{equation}
13I_0=y_0,\qquad I_t=(y_{0:t},u_{0:t-1}), \qquad  t=1,\ldots,N-1.
14\end{equation}
15
16�d� strategie $\pi=\mu_{0:N-1}$ nyn�em�xplicitn��set na stavu syst�, proto�e m� k dispozici pouze informa� vektor. Hled� tedy
17\begin{equation}
18\label{icon}
19\mu_t(I_t)=u_t \, \qquad t=0,1,\ldots,N-1,
20\end{equation}
21
22PRIPUSTNE STRATEGIE
23
24�olem je naj�p�tnou strategii \eqref{icon}, kter�y minimalizovala o��nou ztr�
25\begin{equation}
26\label{ilos}
27J_\pi=\E_{\substack{x_0,\ w_{0:N-1},\\ v_{0:N-1}}}\left\{g_N(x_N)+\sum_{t=0}^{N-1}g_t(x_t,\mu_t(I_t),w_t)\right\},
28\end{equation}
29za podm�k \eqref{sys} a \eqref{poz}.
30
31\section{P� na � s �mi daty}
32Proto�e v �e $t$ nem� k dispozici p�stav syst� $x_t$, ale pouze informa� vektor $I_t$, nem� pou��postup z p�oz�apitoly. P��je pot�� vhodn�ransformovat. Za t�o �m zap�me informa� vektor ve tvaru
33\begin{equation}
34I_0=y_0,\qquad I_{t+1}=(I_t,u_t,y_{t+1}), \qquad  t=1,\ldots,N-1.
35\end{equation}
36
37Na tuto rovnost m� pohl�t jako na rovnice syst� \eqref{sys}. Stav v �e $t$ je nyn�I_t$, vstup $u_t$ a $y_{t+1}$ n�dn�eli�a podm�n�I_t$ a $u_t$ p�eqref{poz}.
38
39D� p�me k nov�tr�v�unkci, kterou definujeme jako
40\begin{gather}
41\tilde{g}_N(I_N)=\E_{x_N}\left\{g_N(x_N)|I_N\right\}, \\ \tilde{g}_t(I_t,u_t,w_t)=\E_{x_t}\left\{g_t(x_t,u_t,w_t)|I_t,u_t\right\}, \qquad  t=1,\ldots,N-1.
42\end{gather}
43
44O��nou ztr� nyn�� ps�ve tvaru
45\begin{equation}
46J_N(I_N)=\tilde{g}_N(I_N)
47\end{equation}
48\begin{equation}
49J_t(I_t)=\min_{u_t \in U_t}\E_{w_t,y_{t+1}}\left\{\tilde{g}_t(I_t,u_t,w_t)+J_{t+1}((I_t,u_t,y_{t+1}))|I_t,u_t\right\} \qquad t=0,\ldots,N-1
50\end{equation}
51
52Tato � ji� m��ena pomoc�ynamick� programov�. P��en�udeme postupovat od konce �� horizontu a postupn�ledat $J_t(I_t)$. Potom libovoln�\pi=\{\mu_0,\ldots,\mu_{N-1}\}$, kter�ab�nim����n�tr� $J_0(y_0)$ je optim��osloupnost rozhodnut�
53
54\section{�zen�yst� s nezn�mi parametry}
55Pokud rovnice syst� obsahuje n�k�� parametr $\theta$, m� vyu��znalosti ��robl� s ne�mi informacemi.
56
57Hledan��n�y m� nejen minimalizovat aktu��tr�, ale rovn�z�at o syst� co nejv� informac�ro minimalizaci budouc� ztr� Tento postup se naz����n�ref].
58
59V � du�� ��� v� syst� $y_t$ pops� jako
60\begin{equation}
61\label{poz2}
62y_0=h_0(\theta,v_0),\qquad y_t=h_t(\theta, I_{t-1},u_{t-1},v_t), \qquad t=1,\ldots,N-1,
63\end{equation}
64
65Ztr�v�unkce je nyn�\begin{equation}
66\label{los2}
67g(y_{0:N},u_{0:N-1},w_{0:N-1})=g_N(y_N)+\sum_{t=0}^{N-1}g_t(y_t,u_t,w_t).
68\end{equation}
69
70P�kl�jme d�, �e o parametru $\theta$ m� n�kou apriorn�nformaci $\theta_0$ a  odhadovac�roceduru tvaru
71\begin{equation}
72\label{the}
73\theta_{t+1}=f_t(\theta_t,I_t,y_{t+1},u_t), \qquad  t=1,\ldots,N-1.
74\end{equation}
75
76Rovnici \eqref{the} m� pova�ovat za rovnici syst� \eqref{sys} pro stav $(\theta_t,I_t)$ a vstup $(y_{t+1},u_t)$ bez p�nosti �umu. Do rovnice \eqref{poz2} dosad� za $\theta$ jeho aktu��dhad, tedy
77\begin{equation}
78\label{poz3}
79y_0=h_0(\theta_0,v_0),\qquad y_t=h_t(\theta_{t-1}, I_{t-1},u_{t-1},v_t), \qquad t=1,\ldots,N-1,
80\end{equation}
81
82Rovnice \eqref{the}, \eqref{poz3} a \eqref{los2} p�avuj�lohu stochastick� �� nep�mi daty.
83
84\subsection{Bayesovsk���
85P�ar�up, jak pro nezn� parametr $\theta$ z�at aposteriorn�ustotu pravd�dobnosti $f(\theta_{t+1}|I_t)$, je-li k dispozici apriorn�ustota pravd�dobnosti $f(\theta_t)$ a informa� vektor $I_t$, je aplikace Bayesova vzorce
86\begin{equation}
87\label{bay}
88f(\theta_{t+1}|I_t)=\frac{f(I_t|\theta_{t+1})f(\theta_t)}{\int f(I_t|\theta_{t+1})f(\theta_t)\mathrm{d}\theta_t}
89\end{equation}
90Rekurzivn�ou�it�zorce \eqref{bay} pro odhad parametru $\theta$ je postup Bayesovsk� u��ref].
91
92P�nkr��vypo� m��ak tento p�p dv�ev� 1) nikdy nem� k dispozici $f(I_t|\theta_{t+1})$, ale pouze aproximaci z m�n�I_t$ a 2) aposteriorn�ustota pravd�dobnosti nemus��analytick�yj�en�co� jej�ou�it� dal��v� komplikuje.
93
94\subsection{Kalman�ltr}
95Pokud v rovnic� \eqref{poz2} popisuj�ch v�syst� vystupuje gausovk�a nezn� parametr je separov�jako line� �n, situace se zna� zjednodu��
96
97Dle p�kladu m��v �e $t$ tvar
98\begin{equation}
99\label{sys2}
100y_{t+1}=\tilde{h}_t(I_t,u_t)+A_t(I_t,u_t))\theta_t+v_{t+1}, , \qquad t=0,\ldots,N-1.
101\end{equation}
102
103kde $\tilde{h}_t(I_t,u_t)$, resp. $A_t(I_t,u_t)$ je zn� funkce, resp. matice z�s� na informa�m vektoru a aktu��stupu. D� p�kl�me gausovsk�ozlo�en�umu $v_{t+1}$ se zn�m rozptylem
104\begin{equation}
105v_{t+1}\sim N(0,Q_{t+1}),
106\end{equation}
107gausovsk�ozlo�en�dhadu nezn�ho parametru $\theta_t$ a jejich nekorelovanost, tedy
108\begin{gather}
109\theta_t\sim N(\hat{\theta},P_t),\\
110\cov(v_{t+1},\theta)=0.
111\end{gather}
112
113Budeme po�adovat, aby odhadovac�rocedura \eqref{the} st� hodnoty parametru $\theta_{t+1}$ byla tvaru line��pravy st� hodnoty $\theta_t$ ��eur�osti v syst�. Tedy �e
114\begin{equation}
115\label{opr}
116\hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-\tilde{h}_t(I_t,u_t)-A_t\hat{\theta}_t),
117\end{equation}
118kde $K_t$ je nezn� matice, kterou ur�e z po�adavku minimalizace v��atice rozptylu $P_{t+1}$. Pro ni jako funkci $K_t$ m� ps�
119\begin{equation}
120P_{t+1}(K_t)=\E[(\theta-\hat{\theta}_{t+1})(\theta-\hat{\theta}_{t+1})^T].
121\end{equation}
122
123Dosazen�za $\hat{\theta}_{t+1}$ z \eqref{opr} a za $y_t$ ze \eqref{sys2} a �ou dostaneme (pro libovolnou matici $B$ budeme pro lep��itelnost nam�o $BB^T$ ps�zkr�n�B^2$)
124\begin{align}
125P_{t+1}(K_t)&=\E_{\theta,v_t}\left\{(\theta-\hat{\theta}_t-K_t(y_{t+1}-\tilde{h}_t(I_t,u_t)-A_t\hat{\theta}_t))^2\right\} \nonumber \\
126&=\E_{\theta,v_t}\left\{((I-K_tA_t)(\theta-\hat{\theta}_t)-K_tv_t)^2\right\} \nonumber \\
127&=(I-K_tA_t)\E\left\{(\theta-\hat{\theta_t})^2\right\}(I-K_tA_t)^T-(I-K_tA_t)\cov(\theta,v_t)K_t^T-\nonumber \\
128&-K_t\cov(\theta,v_t)(I-K_tA_t)^T+K_t\E\left\{v_t^2\right\}K_t^T.
129\end{align}
130
131Pou�it�definice $P_t$, $Q_t$ a p�kladu $\cov(\theta,v_t)=0$ m�
132\begin{equation}
133\label{Pt+1}
134P_{t+1}(K_t)=(I-K_tA_t)P_t(I-K_tA_t)^T+K_tQ_tK_t^T.
135\end{equation}
136Proto�e po�adujeme minim��ozptyl odhadu $\hat{\theta}_{t+1}$, ur�e $K_t$ z rovnice
137\begin{equation}
138\frac{\partial \tr( P_t)}{\partial K_t}=0.
139\end{equation}
140
141K proveden�derivace pou�ijeme vzorce*ODVOZENI BUDE ASI AZ V DODATKU*
142\begin{gather}
143\frac{\partial\tr(MXN)}{\partial X}=M^TN^T,\\
144\frac{\partial\tr(MXNX^TO)}{\partial X}=M^TO^TXN+OMXN,
145\end{gather}
146kde $M,N$ a $O$ jsou konstantn�atice.
147
148T�z�� line��ovnici pro $K_t$ tvaru
149\begin{equation}
150-P_t^TA_t-P_tA_t+K_tA_tP_tK_t+K_tA_t^TP_tK_t+2Q_tK_t=0,
151\end{equation}
152kter��e�en�\begin{equation}
153\label{Kt}
154K_t=\frac{P_tA_t}{A_t^TP_tA_t+Q_t}
155\end{equation}
156Dosazen�\eqref{Kt} do \eqref{Pt+1} po ��ostaneme
157\begin{equation}
158\label{Pt+12}
159P_{t+1}=(I-K_tA_t)P_t
160\end{equation}
161Celkov�edy od p�� odhadu parametru $N(\hat{\theta}_t,P_t)$ k nov� $N(\hat{\theta}_{t+1},P_{t+1})$ p�me pomoc�\begin{equation}
162K_t=\frac{P_tA_t}{A_t^TP_tA_t+Q}
163\end{equation}
164\begin{equation}
165\hat{\theta}_{t+1}=\hat{\theta}_t+K_t(x_{t+1}-f_t(x_t,u_t)-A_t\hat{\theta}_t)
166\end{equation}
167\begin{equation}
168P_{t+1}=(I-K_tA_t)P_t
169\end{equation}
170
171Tato odhadovac�rocedura se naz�lman�ltr.
Note: See TracBrowser for help on using the browser.