root/applications/dual/SIDP/text/ch4.tex @ 919

Revision 919, 4.5 kB (checked in by zimamiro, 15 years ago)
Line 
1V t� kapitole je pops�jednoduch��diskutovan�ite{astrom1986dual}. Na n�jsou porovn� ��lgoritmy uveden� p�l�apitole.
2
3\section{Popis syst�}
4V�syst� je pops�jako
5\begin{gather}
6\label{simple}
7y_{t+1}=y_t+\theta_tu_t+v_{t+1} \qquad t=0,\ldots,N-1,\\
8v_t\sim N(0,\sigma^2).\\
9\theta_t\sim N(\hat{\theta},P_t),\\
10\cov(v_{t+1},\theta)=0.
11\end{gather}
12
13Ztr�vou funkci vol� kvadratickou, tedy
14\begin{equation}
15g(y_{0:N},u_{0:N-1},v_{0:N-1})=\sum_{t=0}^{N-1}y_{t+1}^2.
16\end{equation}
17
18Za odhadovac�roceduru pro parametr $\theta$ vezmeme Kalman�ltr. Pro syst�\eqref{simple} bude m�tvar
19\begin{gather}
20\label{kal}
21K_t=\frac{u_tP_t}{u_t^2P_t+\sigma^2}\\
22\hat{\theta}_{t+1}=\hat{\theta}_t+K_t(y_{t+1}-u_t\hat{\theta}_t),\\
23P_{t+1}=(1-K_tu_t)P_t.
24\end{gather}
25
26O��n�tr� je
27\begin{equation}
28J_t(y_t,\theta_t)=\min_{u_t \in U_t}\E_{y_{t+1},v_t}\left\{y_{t+1}^2+J_{t+1}(y_{t+1},\theta_{t+1})|y_t,\theta_t,u_t\right\}, \qquad t=0,\ldots,N-1.
29\end{equation}
30
31Ta po dosazen� \eqref{simple} a �te�m proveden�t� hodnoty p� na tvar
32\begin{gather}
33\label{dos}
34J_t(y_t,\theta_t)=\min_{u_t \in U_t}\left\{(y_t+\hat{\theta}_tu_t)^2+u_t^2P_t+\sigma^2+\E_{y_{t+1},v_t}(J_{t+1}(y_{t+1},\theta_{t+1}))|y_t,\theta_t,u_t\right\}.
35\end{gather}
36
37\section{Specifika jednotliv��up� tomto odd� jsou pops� n�er�spekty algoritm�er�udeme srovn�t, p�likaci na syst�\eqref{simple}.
38
39\subsection{Certainty equivalent control}
40O��n�tr� \eqref{CE} prejde v
41\begin{gather}
42J_t(y_t, \theta_t)=\min_{u_t \in U_t}\left\{\hat{y}_{t+1}^2 +J_{t+1}(y_{t+1},\theta_{t+1})|I_t,\theta_t,u_t\right\}.
43\end{gather}
44St� hodnota v� je
45\begin{equation}
46\hat{y}_{t+1}=y_t+\hat{\theta}_tu_t     
47\end{equation}
48a rozhodnut�ude tedy
49\begin{equation}
50\mu_t(y_t,\hat{\theta}_t)=-\frac{y_t}{\hat{\theta}_t}.
51\end{equation}
52
53\subsection{Metoda separace}
54V prvn�� metody separace polo�� ���h
55\begin{equation}
56u_0=\sqrt{C-\frac{1}{P_0}}.
57\end{equation}
58T�se dle \eqref{kal} sn� rozptyl $P_0$ nezn�ho parametru $\theta$ na $\frac{1}{C}$. Konstanta $C$ by m� b�ena dostate� mal�aby odhad $\hat{\theta}$ pro druhou f� ��yl dostate� bl�o skute� hodnot�arametru $\theta$. P�ovn� jednotliv�goritm�l�me $C=100$.
59
60\subsection{SIDP}
61Dle \eqref{dos} je optim��u_t$ z�sl�a $(y_t,\hat{\theta}_t,P_t)$. P�mulaci m� tedy v ka�d��ov�okam�iku $t$ diskretizovat t�enzion��rostor nez�sle prom��le \cite{astrom1986dual} je v�ak p�amotnou simulac�hodn�� k transformaci prostoru $(y_t,\hat{\theta}_t,P_t,u_t)$ do nov�om��\eta_t,\beta_t,\zeta_t,\nu_t)$ dle
62\begin{gather}
63\eta_t=\frac{y_t}{\sigma} \\
64\beta_t=\frac{\hat{\theta}_t}{\sqrt{P_t}} \\
65\zeta_t=\frac{1}{\sqrt{P_t}} \\
66\nu_t=\frac{u_t\sqrt{P_t}}{\sigma}
67\end{gather}
68
69Sou�n�� neur�ost ve v� \eqref{simple} reprezentovat jedinou normalizovanou n�dnou veli�ou podle
70\begin{equation}
71s_t=\frac{y_{t+1}-y_t+\hat{\theta}_tu_t}{\sqrt{u_t^2P_t+\sigma^2}} \sim N(0,1).
72\end{equation}
73 
74Rovnice pro v�\eqref{simple} a n�eduj� odhad nezn�ho parametru \eqref{kal} tak p� v
75\begin{gather}
76\eta_{t+1}=\eta_t+\beta_t\nu_t+\sqrt{1+\nu^2}s_t\\
77\beta_{t+1}=\sqrt{1+\nu^2}\beta_t+\nu_ts_t
78\end{gather}
79
80P�me-li k vhodn�praven���n�tr�, dostaneme
81\begin{align}
82V_t(\eta_t,\beta_t,\zeta_t)&=\frac{J_t(y_t,\hat{\theta}_t,P_t)}{\sigma^2}\\
83&=\min_{\nu_t }\left\{(\eta_t+\beta_t\nu_t)^2+\nu_t^2+1+\E_{y_{t+1},v_t}(V_{t+1}(\eta_{t+1},\beta_{t+1},\zeta))\right\}.
84\end{align}
85
86Nyn�po�me o��nou ztr� pro $N-1$.
87\begin{equation}
88V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})=\min_{\nu_{N-1}}\left\{(\eta_{N-1}+\beta_{N-1}\nu_{N-1})^2+\nu_{N-1}^2+1\right\}.
89\end{equation}
90
91Derivac��� optim���h jako
92\begin{equation}
93\label{optcon}
94\nu_{N-1}=-\frac{\eta_{N-1}\beta_{N-1}}{1+\beta_{N-1}^2}
95\end{equation}
96a o��nou ztr�
97\begin{equation}
98V_{N-1}(\eta_{N-1},\beta_{N-1},\zeta_{N-1})= \frac{\eta_{N-1}^2+1}{\beta_{N-1}^2+1}
99\end{equation}
100
101Proto�e optim���h $\nu_{N-1}$ ani o��n�tr� $V_{N-1}$ nez�s�a $\zeta_{N-1}$, d� tvaru $V_t$ nebude rovn�optim���h $\nu_t$ a o��n�tr� $V_t$ z�set na $\zeta_t$. P�skretizaci tedy sta�uva�ovat pouze dvoudimenzion��rostor nez�sle prom��\eta_t,\beta_t)$.
102
103\section{Srovn� jednotliv��up�
Note: See TracBrowser for help on using the browser.