[1244] | 1 | #LyX 1.6.7 created this file. For more info see http://www.lyx.org/ |
---|
[731] | 2 | \lyxformat 345 |
---|
| 3 | \begin_document |
---|
| 4 | \begin_header |
---|
| 5 | \textclass scrartcl |
---|
| 6 | \begin_preamble |
---|
| 7 | \newcommand\blabl{} |
---|
| 8 | \end_preamble |
---|
| 9 | \use_default_options false |
---|
| 10 | \begin_modules |
---|
| 11 | theorems-ams |
---|
| 12 | theorems-ams-extended |
---|
| 13 | \end_modules |
---|
| 14 | \language english |
---|
| 15 | \inputencoding auto |
---|
| 16 | \font_roman lmodern |
---|
| 17 | \font_sans default |
---|
| 18 | \font_typewriter default |
---|
| 19 | \font_default_family default |
---|
| 20 | \font_sc false |
---|
| 21 | \font_osf false |
---|
| 22 | \font_sf_scale 100 |
---|
| 23 | \font_tt_scale 100 |
---|
| 24 | |
---|
| 25 | \graphics default |
---|
| 26 | \paperfontsize default |
---|
| 27 | \spacing single |
---|
| 28 | \use_hyperref true |
---|
| 29 | \pdf_bookmarks true |
---|
| 30 | \pdf_bookmarksnumbered false |
---|
| 31 | \pdf_bookmarksopen false |
---|
| 32 | \pdf_bookmarksopenlevel 1 |
---|
| 33 | \pdf_breaklinks false |
---|
| 34 | \pdf_pdfborder false |
---|
| 35 | \pdf_colorlinks false |
---|
| 36 | \pdf_backref false |
---|
| 37 | \pdf_pdfusetitle true |
---|
| 38 | \papersize default |
---|
| 39 | \use_geometry false |
---|
| 40 | \use_amsmath 1 |
---|
| 41 | \use_esint 0 |
---|
| 42 | \cite_engine basic |
---|
| 43 | \use_bibtopic false |
---|
| 44 | \paperorientation portrait |
---|
| 45 | \secnumdepth 3 |
---|
| 46 | \tocdepth 3 |
---|
| 47 | \paragraph_separation indent |
---|
| 48 | \defskip medskip |
---|
| 49 | \quotes_language english |
---|
| 50 | \papercolumns 1 |
---|
| 51 | \papersides 1 |
---|
| 52 | \paperpagestyle default |
---|
| 53 | \tracking_changes false |
---|
| 54 | \output_changes false |
---|
| 55 | \author "" |
---|
| 56 | \author "" |
---|
| 57 | \end_header |
---|
| 58 | |
---|
| 59 | \begin_body |
---|
| 60 | |
---|
| 61 | \begin_layout Standard |
---|
| 62 | \begin_inset FormulaMacro |
---|
| 63 | \newcommand{\isa}[1]{i_{\alpha#1}} |
---|
| 64 | {i_{\alpha#1}} |
---|
| 65 | \end_inset |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | \begin_inset FormulaMacro |
---|
| 69 | \newcommand{\isb}[1]{i_{\beta#1}} |
---|
| 70 | {i_{\beta#1}} |
---|
| 71 | \end_inset |
---|
| 72 | |
---|
| 73 | |
---|
| 74 | \begin_inset FormulaMacro |
---|
| 75 | \newcommand{\Dt}{\Delta t} |
---|
| 76 | {\Delta t} |
---|
| 77 | \end_inset |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | \begin_inset FormulaMacro |
---|
| 81 | \newcommand{\om}{\omega} |
---|
| 82 | {\omega} |
---|
| 83 | \end_inset |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | \begin_inset FormulaMacro |
---|
| 87 | \newcommand{\th}{\vartheta} |
---|
| 88 | {\vartheta} |
---|
| 89 | \end_inset |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | \begin_inset FormulaMacro |
---|
| 93 | \newcommand{\usa}[1]{u_{\alpha#1}} |
---|
| 94 | {u_{\alpha#1}} |
---|
| 95 | \end_inset |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | \begin_inset FormulaMacro |
---|
| 99 | \newcommand{\usb}[1]{u_{\beta#1}} |
---|
| 100 | {u_{\beta#1}} |
---|
| 101 | \end_inset |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | \end_layout |
---|
| 105 | |
---|
| 106 | \begin_layout Title |
---|
| 107 | PMSM system description |
---|
| 108 | \end_layout |
---|
| 109 | |
---|
| 110 | \begin_layout Section |
---|
| 111 | Model of PMSM Drive |
---|
| 112 | \end_layout |
---|
| 113 | |
---|
| 114 | \begin_layout Standard |
---|
| 115 | Permanent magnet synchronous machine (PMSM) drive with surface magnets on |
---|
| 116 | the rotor is described by conventional equations of PMSM in the stationary |
---|
| 117 | reference frame: |
---|
| 118 | \begin_inset Formula \begin{align} |
---|
| 119 | \frac{d\isa{}}{dt} & =-\frac{R_{s}}{L_{s}}\isa{}+\frac{\Psi_{PM}}{L_{s}}\omega_{me}\sin\th+\frac{\usa{}}{L_{s}},\nonumber \\ |
---|
| 120 | \frac{d\isb{}}{dt} & =-\frac{R_{s}}{L_{s}}\isb{}-\frac{\Psi_{PM}}{L_{s}}\omega_{me}\cos\th+\frac{\usb{}}{L_{s}},\label{eq:simulator}\\ |
---|
| 121 | \frac{d\om}{dt} & =\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{}\cos(\th)-\isa{}\sin(\th)\right)-\frac{B}{J}\om-\frac{p_{p}}{J}T_{L},\nonumber \\ |
---|
| 122 | \frac{d\th}{dt} & =\omega_{me}.\nonumber \end{align} |
---|
| 123 | |
---|
| 124 | \end_inset |
---|
| 125 | |
---|
| 126 | Here, |
---|
| 127 | \begin_inset Formula $\isa{}$ |
---|
| 128 | \end_inset |
---|
| 129 | |
---|
| 130 | , |
---|
| 131 | \begin_inset Formula $\isb{}$ |
---|
| 132 | \end_inset |
---|
| 133 | |
---|
| 134 | , |
---|
| 135 | \begin_inset Formula $\usa{}$ |
---|
| 136 | \end_inset |
---|
| 137 | |
---|
| 138 | and |
---|
| 139 | \begin_inset Formula $\usb{}$ |
---|
| 140 | \end_inset |
---|
| 141 | |
---|
| 142 | represent stator current and voltage in the stationary reference frame, |
---|
| 143 | respectively; |
---|
| 144 | \begin_inset Formula $\om$ |
---|
| 145 | \end_inset |
---|
| 146 | |
---|
| 147 | is electrical rotor speed and |
---|
| 148 | \begin_inset Formula $\th$ |
---|
| 149 | \end_inset |
---|
| 150 | |
---|
| 151 | is electrical rotor position. |
---|
| 152 | |
---|
| 153 | \begin_inset Formula $R_{s}$ |
---|
| 154 | \end_inset |
---|
| 155 | |
---|
| 156 | and |
---|
| 157 | \begin_inset Formula $L_{s}$ |
---|
| 158 | \end_inset |
---|
| 159 | |
---|
| 160 | is stator resistance and inductance respectively, |
---|
| 161 | \begin_inset Formula $\Psi_{pm}$ |
---|
| 162 | \end_inset |
---|
| 163 | |
---|
| 164 | is the flux of permanent magnets on the rotor, |
---|
| 165 | \begin_inset Formula $B$ |
---|
| 166 | \end_inset |
---|
| 167 | |
---|
| 168 | is friction and |
---|
| 169 | \begin_inset Formula $T_{L}$ |
---|
| 170 | \end_inset |
---|
| 171 | |
---|
| 172 | is load torque, |
---|
| 173 | \begin_inset Formula $J$ |
---|
| 174 | \end_inset |
---|
| 175 | |
---|
| 176 | is moment of inertia, |
---|
| 177 | \begin_inset Formula $p_{p}$ |
---|
| 178 | \end_inset |
---|
| 179 | |
---|
| 180 | is the number of pole pairs, |
---|
| 181 | \begin_inset Formula $k_{p}$ |
---|
| 182 | \end_inset |
---|
| 183 | |
---|
| 184 | is the Park constant. |
---|
| 185 | \end_layout |
---|
| 186 | |
---|
| 187 | \begin_layout Standard |
---|
| 188 | The sensor-less control scenario arise when sensors of the speed and position |
---|
| 189 | ( |
---|
| 190 | \begin_inset Formula $\om$ |
---|
| 191 | \end_inset |
---|
| 192 | |
---|
| 193 | and |
---|
| 194 | \begin_inset Formula $\th$ |
---|
| 195 | \end_inset |
---|
| 196 | |
---|
| 197 | ) are missing (from various reasons). |
---|
| 198 | Then, the only observed variables are: |
---|
| 199 | \begin_inset Formula \begin{equation} |
---|
| 200 | y_{t}=\left[\begin{array}{c} |
---|
| 201 | \isa{}(t),\isb{}(t),\usa{}(t),\usb{}(t)\end{array}\right].\label{eq:obs}\end{equation} |
---|
| 202 | |
---|
| 203 | \end_inset |
---|
| 204 | |
---|
| 205 | Which are, however, observed only up to some precision. |
---|
| 206 | \end_layout |
---|
| 207 | |
---|
| 208 | \begin_layout Standard |
---|
| 209 | Discretization of the model ( |
---|
| 210 | \begin_inset CommandInset ref |
---|
| 211 | LatexCommand ref |
---|
| 212 | reference "eq:simulator" |
---|
| 213 | |
---|
| 214 | \end_inset |
---|
| 215 | |
---|
| 216 | ) was performed using Euler method with the following result: |
---|
| 217 | \begin_inset Formula \begin{align*} |
---|
| 218 | \isa{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}},\\ |
---|
| 219 | \isb{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}},\\ |
---|
[807] | 220 | \om_{t+1} & =(1-\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\ |
---|
[731] | 221 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*} |
---|
| 222 | |
---|
| 223 | \end_inset |
---|
| 224 | |
---|
| 225 | In this work, we consider parameters of the model known, we can make the |
---|
| 226 | following substitutions to simplify notation, |
---|
| 227 | \begin_inset Formula $a=1-\frac{R_{s}}{L_{s}}\Dt$ |
---|
| 228 | \end_inset |
---|
| 229 | |
---|
| 230 | , |
---|
| 231 | \begin_inset Formula $b=\frac{\Psi_{pm}}{L_{s}}\Dt$ |
---|
| 232 | \end_inset |
---|
| 233 | |
---|
| 234 | , |
---|
| 235 | \begin_inset Formula $c=\frac{\Dt}{L_{s}}$ |
---|
| 236 | \end_inset |
---|
| 237 | |
---|
| 238 | , |
---|
| 239 | \begin_inset Formula $d=1-\frac{B}{J}\Dt$ |
---|
| 240 | \end_inset |
---|
| 241 | |
---|
| 242 | , |
---|
| 243 | \family roman |
---|
| 244 | \series medium |
---|
| 245 | \shape up |
---|
| 246 | \size normal |
---|
| 247 | \emph off |
---|
| 248 | \bar no |
---|
| 249 | \noun off |
---|
| 250 | \color none |
---|
| 251 | |
---|
| 252 | \begin_inset Formula $e=\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}$ |
---|
| 253 | \end_inset |
---|
| 254 | |
---|
| 255 | , which results in a simplified model: |
---|
| 256 | \family default |
---|
| 257 | \series default |
---|
| 258 | \shape default |
---|
| 259 | \size default |
---|
| 260 | \emph default |
---|
| 261 | \bar default |
---|
| 262 | \noun default |
---|
| 263 | \color inherit |
---|
| 264 | |
---|
| 265 | \begin_inset Formula \begin{align} |
---|
| 266 | \isa{,t+1} & =a\,\isa{,t}+b\omega_{t}\sin\vartheta_{t}+c\usa{,t},\nonumber \\ |
---|
| 267 | \isb{,t+1} & =a\,\isb{,t}-b\omega_{t}\cos\vartheta_{t}+c\usb{,t},\label{eq:model-simple}\\ |
---|
| 268 | \om_{t+1} & =d\om_{t}+e\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right),\nonumber \\ |
---|
| 269 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\nonumber \end{align} |
---|
| 270 | |
---|
| 271 | \end_inset |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | \end_layout |
---|
| 275 | |
---|
| 276 | \begin_layout Standard |
---|
| 277 | The above equations can be aggregated into state |
---|
| 278 | \begin_inset Formula $x_{t}=[\isa{,t},\isb{,t},\om_{t},\th_{t}]$ |
---|
| 279 | \end_inset |
---|
| 280 | |
---|
| 281 | will be denoted as |
---|
| 282 | \begin_inset Formula $x_{t+1}=g(x_{t},u_{t})$ |
---|
| 283 | \end_inset |
---|
| 284 | |
---|
| 285 | . |
---|
| 286 | \end_layout |
---|
| 287 | |
---|
| 288 | \begin_layout Subsection |
---|
| 289 | Gaussian model of disturbances |
---|
| 290 | \end_layout |
---|
| 291 | |
---|
| 292 | \begin_layout Standard |
---|
| 293 | This model is motivated by the well known Kalman filter, which is optimal |
---|
| 294 | for linear system with Gaussian noise. |
---|
| 295 | Hence, we model all disturbances to have covariance matrices |
---|
| 296 | \begin_inset Formula $Q_{t}$ |
---|
| 297 | \end_inset |
---|
| 298 | |
---|
| 299 | and |
---|
| 300 | \begin_inset Formula $R_{t}$ |
---|
| 301 | \end_inset |
---|
| 302 | |
---|
| 303 | for the state |
---|
| 304 | \begin_inset Formula $x_{t}$ |
---|
| 305 | \end_inset |
---|
| 306 | |
---|
| 307 | and observations |
---|
| 308 | \begin_inset Formula $y_{t}$ |
---|
| 309 | \end_inset |
---|
| 310 | |
---|
| 311 | respectively. |
---|
[879] | 312 | \begin_inset Formula \begin{align} |
---|
| 313 | x_{t+1} & \sim\mathcal{N}(g(x_{t}),Q_{t})\label{eq:model}\\ |
---|
| 314 | y_{t} & \sim\mathcal{N}([\isa{,t},\isb{,t}]',R_{t})\nonumber \end{align} |
---|
[731] | 315 | |
---|
| 316 | \end_inset |
---|
| 317 | |
---|
| 318 | |
---|
| 319 | \end_layout |
---|
| 320 | |
---|
| 321 | \begin_layout Standard |
---|
| 322 | Under this assumptions, Bayesian estimation of the state, |
---|
| 323 | \begin_inset Formula $x_{t}$ |
---|
| 324 | \end_inset |
---|
| 325 | |
---|
| 326 | , can be approximated by so called Extended Kalman filter which approximates |
---|
| 327 | posterior density of the state by a Gaussian |
---|
| 328 | \begin_inset Formula \[ |
---|
[848] | 329 | f(x_{t}|y_{1}\ldots y_{t})=\mathcal{N}(\hat{x}_{t},S_{t}).\] |
---|
[731] | 330 | |
---|
| 331 | \end_inset |
---|
| 332 | |
---|
| 333 | Its sufficient statistics |
---|
| 334 | \begin_inset Formula $S_{t}=\left[\hat{x}_{t},P_{t}\right]$ |
---|
| 335 | \end_inset |
---|
| 336 | |
---|
| 337 | is evaluated recursively as follows: |
---|
| 338 | \begin_inset Formula \begin{eqnarray} |
---|
| 339 | \hat{x}_{t} & = & g(\hat{x}_{t-1})-K\left(y_{t}-h(\hat{x}_{t-1})\right).\label{eq:ekf_mean}\\ |
---|
[806] | 340 | R_{y} & = & CP_{t-1}C'+R_{t},\nonumber \\ |
---|
| 341 | K & = & P_{t-1}C'R_{y}^{-1},\nonumber \\ |
---|
[848] | 342 | S_{t} & = & P_{t-1}-P_{t-1}C'R_{y}^{-1}CP_{t-1},\\ |
---|
| 343 | P_{t} & = & AS_{t}A'+Q_{t}.\label{eq:ekf_cov}\end{eqnarray} |
---|
[731] | 344 | |
---|
| 345 | \end_inset |
---|
| 346 | |
---|
| 347 | where |
---|
| 348 | \begin_inset Formula $A=\frac{d}{dx_{t}}g(x_{t})$ |
---|
| 349 | \end_inset |
---|
| 350 | |
---|
| 351 | , |
---|
| 352 | \begin_inset Formula $C=\frac{d}{dx_{t}}h(x_{t})$ |
---|
| 353 | \end_inset |
---|
| 354 | |
---|
| 355 | , |
---|
| 356 | \begin_inset Formula $g(x_{t})$ |
---|
| 357 | \end_inset |
---|
| 358 | |
---|
| 359 | is model ( |
---|
| 360 | \begin_inset CommandInset ref |
---|
| 361 | LatexCommand ref |
---|
| 362 | reference "eq:model-simple" |
---|
| 363 | |
---|
| 364 | \end_inset |
---|
| 365 | |
---|
| 366 | ) and |
---|
| 367 | \begin_inset Formula $h(x_{t})$ |
---|
| 368 | \end_inset |
---|
| 369 | |
---|
| 370 | direct observation of |
---|
| 371 | \begin_inset Formula $y_{t}=[\isa{,t},\isb{,t}]$ |
---|
| 372 | \end_inset |
---|
| 373 | |
---|
| 374 | , i.e. |
---|
| 375 | \begin_inset Formula \[ |
---|
| 376 | A=\left[\begin{array}{cccc} |
---|
| 377 | a & 0 & b\sin\th & b\om\cos\th\\ |
---|
| 378 | 0 & a & -b\cos\th & b\om\sin\th\\ |
---|
| 379 | -e\sin\th & e\cos\th & d & -e(\isb{}\sin\th+\isa{}\cos\th)\\ |
---|
| 380 | 0 & 0 & \Dt & 1\end{array}\right],\quad C=\left[\begin{array}{cccc} |
---|
[848] | 381 | 1 & 0 & 0 & 0\\ |
---|
| 382 | 0 & 1 & 0 & 0\end{array}\right]\] |
---|
[731] | 383 | |
---|
| 384 | \end_inset |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | \end_layout |
---|
| 388 | |
---|
| 389 | \begin_layout Standard |
---|
[879] | 390 | \begin_inset Formula \[ |
---|
| 391 | B=\left[\begin{array}{cc} |
---|
| 392 | c & 0\\ |
---|
| 393 | 0 & c\\ |
---|
| 394 | 0 & 0\\ |
---|
| 395 | 0 & 0\end{array}\right]\] |
---|
| 396 | |
---|
| 397 | \end_inset |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | \end_layout |
---|
| 401 | |
---|
| 402 | \begin_layout Standard |
---|
[731] | 403 | Covariance matrices of the system |
---|
| 404 | \begin_inset Formula $Q$ |
---|
| 405 | \end_inset |
---|
| 406 | |
---|
| 407 | and |
---|
| 408 | \begin_inset Formula $R$ |
---|
| 409 | \end_inset |
---|
| 410 | |
---|
| 411 | are supposed to be known. |
---|
| 412 | \end_layout |
---|
| 413 | |
---|
[749] | 414 | \begin_layout Subsection |
---|
| 415 | Test system |
---|
| 416 | \end_layout |
---|
| 417 | |
---|
| 418 | \begin_layout Standard |
---|
| 419 | A real PMSM system on which the algorithms will be tested has parameters: |
---|
| 420 | \end_layout |
---|
| 421 | |
---|
| 422 | \begin_layout Standard |
---|
| 423 | \begin_inset Formula \begin{eqnarray*} |
---|
| 424 | R_{s} & = & 0.28;\\ |
---|
| 425 | L_{s} & = & 0.003465;\\ |
---|
| 426 | \Psi_{pm} & = & 0.1989;\\ |
---|
| 427 | k_{p} & = & 1.5\\ |
---|
| 428 | p & = & 4.0;\\ |
---|
| 429 | J & = & 0.04;\\ |
---|
| 430 | \Delta t & = & 0.000125\end{eqnarray*} |
---|
| 431 | |
---|
| 432 | \end_inset |
---|
| 433 | |
---|
| 434 | which yields |
---|
| 435 | \begin_inset Formula \begin{eqnarray*} |
---|
| 436 | a & = & 0.9898\\ |
---|
| 437 | b & = & 0.0072\\ |
---|
| 438 | c & = & 0.0361\\ |
---|
| 439 | d & = & 1\\ |
---|
| 440 | e & = & 0.0149\end{eqnarray*} |
---|
| 441 | |
---|
| 442 | \end_inset |
---|
| 443 | |
---|
| 444 | The covaraince matrices |
---|
| 445 | \begin_inset Formula $Q$ |
---|
| 446 | \end_inset |
---|
| 447 | |
---|
| 448 | and |
---|
| 449 | \begin_inset Formula $R$ |
---|
| 450 | \end_inset |
---|
| 451 | |
---|
| 452 | are assumed to be known. |
---|
| 453 | For the initial tests, we can use the following values: |
---|
| 454 | \end_layout |
---|
| 455 | |
---|
| 456 | \begin_layout Standard |
---|
| 457 | \begin_inset Formula \begin{eqnarray*} |
---|
| 458 | Q & = & \mathrm{diag}(0.0013,0.0013,5e-6,1e-10),\\ |
---|
| 459 | R & = & \mathrm{diag}(0.0006,0.0006).\end{eqnarray*} |
---|
| 460 | |
---|
| 461 | \end_inset |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | \end_layout |
---|
| 465 | |
---|
[806] | 466 | \begin_layout Standard |
---|
| 467 | Limits: |
---|
[807] | 468 | \begin_inset Formula \begin{align*} |
---|
| 469 | u_{\alpha,max} & =50V, & u_{\alpha,min} & =-50V,\\ |
---|
| 470 | u_{\beta,max} & =50V. & u_{\beta,min} & =-50V,\end{align*} |
---|
[806] | 471 | |
---|
| 472 | \end_inset |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | \end_layout |
---|
| 476 | |
---|
[807] | 477 | \begin_layout Standard |
---|
| 478 | Perhaps better: |
---|
| 479 | \begin_inset Formula \[ |
---|
| 480 | u_{\alpha}^{2}+u_{\beta}^{2}<100^{2}.\] |
---|
| 481 | |
---|
| 482 | \end_inset |
---|
| 483 | |
---|
| 484 | |
---|
| 485 | \end_layout |
---|
| 486 | |
---|
[731] | 487 | \begin_layout Section |
---|
| 488 | Control |
---|
| 489 | \end_layout |
---|
| 490 | |
---|
| 491 | \begin_layout Standard |
---|
| 492 | The task is to reach predefined speed |
---|
| 493 | \begin_inset Formula $\overline{\omega}_{t}$ |
---|
| 494 | \end_inset |
---|
| 495 | |
---|
| 496 | . |
---|
| 497 | \end_layout |
---|
| 498 | |
---|
| 499 | \begin_layout Standard |
---|
| 500 | For simplicity, we will assume additive loss function: |
---|
[879] | 501 | \begin_inset Formula \begin{eqnarray*} |
---|
| 502 | l(x_{t},u_{t}) & = & (\omega_{t}-\overline{\omega}_{t})^{2}+q(\usa{,t}^{2}+\usb{,t}^{2}).\\ |
---|
| 503 | & = & (\omega_{t}-\overline{\omega}_{t})\Xi(\omega_{t}-\overline{\omega}_{t})+[\usa t,\usb t]\underbrace{\left[\begin{array}{cc} |
---|
| 504 | \upsilon & 0\\ |
---|
| 505 | 0 & \upsilon\end{array}\right]}_{\Upsilon}\left[\begin{array}{c} |
---|
| 506 | \usa t\\ |
---|
| 507 | \usb t\end{array}\right]\end{eqnarray*} |
---|
[731] | 508 | |
---|
| 509 | \end_inset |
---|
| 510 | |
---|
| 511 | Here, |
---|
[879] | 512 | \begin_inset Formula $\Upsilon$ |
---|
[731] | 513 | \end_inset |
---|
| 514 | |
---|
[879] | 515 | is the chosen penalization of the inputs, which remains to be tuned. |
---|
| 516 | \end_layout |
---|
| 517 | |
---|
| 518 | \begin_layout Standard |
---|
| 519 | |
---|
| 520 | \series bold |
---|
| 521 | Note |
---|
| 522 | \series default |
---|
| 523 | : classical notation of penalization matrices is |
---|
| 524 | \begin_inset Formula $Q$ |
---|
[806] | 525 | \end_inset |
---|
| 526 | |
---|
[879] | 527 | and |
---|
| 528 | \begin_inset Formula $R$ |
---|
| 529 | \end_inset |
---|
| 530 | |
---|
| 531 | , but it conflicts wit |
---|
| 532 | \begin_inset Formula $Q$ |
---|
| 533 | \end_inset |
---|
| 534 | |
---|
| 535 | and |
---|
| 536 | \begin_inset Formula $R$ |
---|
| 537 | \end_inset |
---|
| 538 | |
---|
| 539 | in ( |
---|
| 540 | \begin_inset CommandInset ref |
---|
| 541 | LatexCommand ref |
---|
| 542 | reference "eq:model" |
---|
| 543 | |
---|
| 544 | \end_inset |
---|
| 545 | |
---|
| 546 | ). |
---|
[731] | 547 | \end_layout |
---|
| 548 | |
---|
| 549 | \begin_layout Standard |
---|
| 550 | Following the standard dynamic programming approach, optimization of the |
---|
| 551 | loss function can be done recursively, as follows: |
---|
| 552 | \begin_inset Formula \[ |
---|
| 553 | V(x_{t-1},u_{t-1})=\arg\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(x_{t},u_{t})\right\} ,\] |
---|
| 554 | |
---|
| 555 | \end_inset |
---|
| 556 | |
---|
| 557 | where |
---|
| 558 | \begin_inset Formula $V(x_{t},u_{t})$ |
---|
| 559 | \end_inset |
---|
| 560 | |
---|
| 561 | is the Bellman function. |
---|
| 562 | Since the model evolution is stochastic, we can reformulate it in terms |
---|
| 563 | of sufficient statistics, |
---|
| 564 | \begin_inset Formula $S$ |
---|
| 565 | \end_inset |
---|
| 566 | |
---|
| 567 | as follows: |
---|
| 568 | \begin_inset Formula \[ |
---|
| 569 | V(S_{t-1})=\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(S_{t})\right\} .\] |
---|
| 570 | |
---|
| 571 | \end_inset |
---|
| 572 | |
---|
| 573 | |
---|
| 574 | \end_layout |
---|
| 575 | |
---|
| 576 | \begin_layout Standard |
---|
| 577 | Representation of the Bellman function depends on chosen approximation. |
---|
| 578 | \end_layout |
---|
| 579 | |
---|
[751] | 580 | \begin_layout Subsection |
---|
[879] | 581 | LQG control |
---|
| 582 | \end_layout |
---|
| 583 | |
---|
| 584 | \begin_layout Standard |
---|
| 585 | Control of linear state-space model with Gaussian noise |
---|
| 586 | \begin_inset Formula \begin{eqnarray*} |
---|
| 587 | x_{t} & = & Ax_{t-1}+Bu_{t}+Q^{\frac{1}{2}}v_{t},\\ |
---|
| 588 | y_{t} & = & Cx_{t}+Du_{t}+R^{\frac{1}{2}}w_{t}.\end{eqnarray*} |
---|
| 589 | |
---|
| 590 | \end_inset |
---|
| 591 | |
---|
| 592 | to minimize loss function |
---|
| 593 | \begin_inset Formula \[ |
---|
[880] | 594 | L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+u_{t}'\Upsilon u_{t}.\] |
---|
[879] | 595 | |
---|
| 596 | \end_inset |
---|
| 597 | |
---|
| 598 | |
---|
| 599 | \end_layout |
---|
| 600 | |
---|
| 601 | \begin_layout Standard |
---|
| 602 | Optimal solution in the sense of dynamic programming on horizon |
---|
| 603 | \begin_inset Formula $t+h$ |
---|
| 604 | \end_inset |
---|
| 605 | |
---|
| 606 | is: |
---|
| 607 | \begin_inset Newline newline |
---|
| 608 | \end_inset |
---|
| 609 | |
---|
| 610 | |
---|
| 611 | \begin_inset Formula \begin{eqnarray*} |
---|
[880] | 612 | u_{t} & = & L_{t}\left(\hat{x}_{t}-\overline{x}_{t}\right),\\ |
---|
[879] | 613 | L_{t} & = & -(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1}A,\\ |
---|
| 614 | S_{t} & = & A'(S_{t+1}-S_{t+1}B(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1})A+\Xi,\end{eqnarray*} |
---|
| 615 | |
---|
| 616 | \end_inset |
---|
| 617 | |
---|
| 618 | This solution is certainty equivalent, i.e. |
---|
| 619 | only the first moment, |
---|
| 620 | \begin_inset Formula $\hat{x}$ |
---|
| 621 | \end_inset |
---|
| 622 | |
---|
| 623 | , of the Kalman filter is used. |
---|
| 624 | \end_layout |
---|
| 625 | |
---|
| 626 | \begin_layout Subsection |
---|
[1244] | 627 | PI control |
---|
| 628 | \end_layout |
---|
| 629 | |
---|
| 630 | \begin_layout Standard |
---|
| 631 | The classical control is based on transformation to |
---|
| 632 | \begin_inset Formula $dq$ |
---|
| 633 | \end_inset |
---|
| 634 | |
---|
| 635 | reference frame: |
---|
| 636 | \begin_inset Formula \begin{eqnarray*} |
---|
| 637 | i_{d} & = & i_{\alpha}\cos(\vartheta)+i_{\beta}\sin(\vartheta),\\ |
---|
| 638 | i_{q} & = & i_{\beta}\cos(\vartheta)-i_{\beta}\sin(\vartheta).\end{eqnarray*} |
---|
| 639 | |
---|
| 640 | \end_inset |
---|
| 641 | |
---|
| 642 | Desired |
---|
| 643 | \begin_inset Formula $i_{q}$ |
---|
| 644 | \end_inset |
---|
| 645 | |
---|
| 646 | current, |
---|
| 647 | \begin_inset Formula $\overline{i}_{q}$ |
---|
| 648 | \end_inset |
---|
| 649 | |
---|
| 650 | , is derived using PI controller |
---|
| 651 | \begin_inset Formula \[ |
---|
| 652 | \overline{i}_{q}=PI(\overline{\omega}-\omega,P_{i},I_{i}).\] |
---|
| 653 | |
---|
| 654 | \end_inset |
---|
| 655 | |
---|
| 656 | This current needs to be achieved through voltages |
---|
| 657 | \begin_inset Formula $u_{d},u_{q}$ |
---|
| 658 | \end_inset |
---|
| 659 | |
---|
| 660 | which are again obtained from a PI controller |
---|
| 661 | \begin_inset Formula \begin{eqnarray*} |
---|
| 662 | u_{d} & = & PI(-i_{d},P_{u},I_{u}),\\ |
---|
| 663 | u_{q} & = & PI(\overline{i}_{q}-i_{q},P_{u},I_{u}).\end{eqnarray*} |
---|
| 664 | |
---|
| 665 | \end_inset |
---|
| 666 | |
---|
| 667 | These are compensated (for some reason) as follows: |
---|
| 668 | \begin_inset Formula \begin{eqnarray*} |
---|
| 669 | u_{d} & = & u_{d}-L_{S}\omega\overline{i}_{q},\\ |
---|
| 670 | u_{q} & = & u_{q}+\Psi_{pm}\omega.\end{eqnarray*} |
---|
| 671 | |
---|
| 672 | \end_inset |
---|
| 673 | |
---|
| 674 | Conversion to |
---|
| 675 | \begin_inset Formula $u_{\alpha},u_{\beta}$ |
---|
| 676 | \end_inset |
---|
| 677 | |
---|
| 678 | is |
---|
| 679 | \begin_inset Formula \begin{align*} |
---|
| 680 | u_{\alpha} & =|U|\cos(\phi), & u_{\beta} & =|U|\sin(\phi)\\ |
---|
| 681 | |U| & =\sqrt{u_{d}^{2}+u_{q}^{2}}, & \phi & =\begin{cases} |
---|
| 682 | \arctan(\frac{u_{q}}{u_{d}})+\vartheta & u_{d}\ge0\\ |
---|
| 683 | \arctan(\frac{u_{q}}{u_{d}})+\pi+\vartheta & u_{d}<0\end{cases}\end{align*} |
---|
| 684 | |
---|
| 685 | \end_inset |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | \end_layout |
---|
| 689 | |
---|
| 690 | \begin_layout Standard |
---|
| 691 | PI controller is defined as follows: |
---|
| 692 | \begin_inset Formula \begin{eqnarray*} |
---|
| 693 | x & = & PI(\epsilon,P,I)\\ |
---|
| 694 | & = & P\epsilon+I(S_{t-1}+\epsilon)\\ |
---|
| 695 | S_{t} & = & S_{t-1}+\epsilon\end{eqnarray*} |
---|
| 696 | |
---|
| 697 | \end_inset |
---|
| 698 | |
---|
| 699 | Constants for the system: |
---|
| 700 | \begin_inset Formula \[ |
---|
| 701 | P_{i}=3,\,\, I_{i}=0.00375,\,\, P_{u}=20,\,\, I_{u}=0.5.\] |
---|
| 702 | |
---|
| 703 | \end_inset |
---|
| 704 | |
---|
| 705 | The requested values for |
---|
| 706 | \begin_inset Formula $\omega$ |
---|
| 707 | \end_inset |
---|
| 708 | |
---|
| 709 | should be kept in interval |
---|
| 710 | \begin_inset Formula $<-30,30>$ |
---|
| 711 | \end_inset |
---|
| 712 | |
---|
| 713 | . |
---|
| 714 | \end_layout |
---|
| 715 | |
---|
| 716 | \begin_layout Subsection |
---|
[879] | 717 | Poor-man's dual LQG control |
---|
| 718 | \end_layout |
---|
| 719 | |
---|
| 720 | \begin_layout Standard |
---|
| 721 | Various heuristic solutions to dual extension of LQG has been proposed. |
---|
| 722 | Most of them is based on approximation of the loss function |
---|
| 723 | \begin_inset Formula \[ |
---|
| 724 | L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+(u_{t}-\overline{u}_{t})'\Upsilon(u_{t}-\overline{u}_{t})+DUAL\_TERM.\] |
---|
| 725 | |
---|
| 726 | \end_inset |
---|
| 727 | |
---|
| 728 | where DUAL_TERM is typically a function of |
---|
| 729 | \begin_inset Formula $P_{t+2}$ |
---|
| 730 | \end_inset |
---|
| 731 | |
---|
| 732 | . |
---|
| 733 | |
---|
| 734 | \end_layout |
---|
| 735 | |
---|
| 736 | \begin_layout Standard |
---|
| 737 | To be continued... |
---|
| 738 | \end_layout |
---|
| 739 | |
---|
| 740 | \begin_layout Subsection |
---|
[751] | 741 | Test Scenarios |
---|
| 742 | \end_layout |
---|
| 743 | |
---|
[731] | 744 | \begin_layout Standard |
---|
[751] | 745 | With almost full information, design of the control strategy should be almost |
---|
| 746 | trivial: |
---|
| 747 | \begin_inset Formula \begin{eqnarray*} |
---|
| 748 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
| 749 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,0.01]).\end{eqnarray*} |
---|
| 750 | |
---|
| 751 | \end_inset |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | \end_layout |
---|
| 755 | |
---|
| 756 | \begin_layout Standard |
---|
[753] | 757 | The difficulty arise with growing initial covariance matrix: |
---|
[751] | 758 | \begin_inset Formula \begin{eqnarray*} |
---|
| 759 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
[806] | 760 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,1]).\end{eqnarray*} |
---|
[751] | 761 | |
---|
| 762 | \end_inset |
---|
| 763 | |
---|
| 764 | |
---|
| 765 | \end_layout |
---|
| 766 | |
---|
| 767 | \begin_layout Standard |
---|
| 768 | Or even worse: |
---|
| 769 | \begin_inset Formula \begin{eqnarray*} |
---|
| 770 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
[806] | 771 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,10]).\end{eqnarray*} |
---|
[751] | 772 | |
---|
| 773 | \end_inset |
---|
| 774 | |
---|
[879] | 775 | ==\SpecialChar \- |
---|
| 776 | = |
---|
[753] | 777 | \end_layout |
---|
| 778 | |
---|
| 779 | \begin_layout Standard |
---|
| 780 | The requested value |
---|
[806] | 781 | \begin_inset Formula $\overline{\omega}_{t}=1.0015.$ |
---|
[753] | 782 | \end_inset |
---|
| 783 | |
---|
| 784 | |
---|
[806] | 785 | \end_layout |
---|
| 786 | |
---|
| 787 | \begin_layout Conjecture |
---|
| 788 | It is sufficient to consider hyper-state |
---|
| 789 | \begin_inset Formula $H=[\hat{i}_{\alpha},\hat{i}_{\beta},\hat{\omega},\hat{\vartheta},P(3,3),P(4,4)]$ |
---|
| 790 | \end_inset |
---|
| 791 | |
---|
| 792 | . |
---|
| 793 | \end_layout |
---|
| 794 | |
---|
| 795 | \begin_layout Conjecture |
---|
[731] | 796 | \begin_inset CommandInset bibtex |
---|
| 797 | LatexCommand bibtex |
---|
| 798 | bibfiles "bibtex/vs,bibtex/vs-world,bibtex/world_classics,bibtex/world,new_bib_PS" |
---|
| 799 | options "plain" |
---|
| 800 | |
---|
| 801 | \end_inset |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | \end_layout |
---|
| 805 | |
---|
| 806 | \end_body |
---|
| 807 | \end_document |
---|