1 | #LyX 1.6.7 created this file. For more info see http://www.lyx.org/ |
---|
2 | \lyxformat 345 |
---|
3 | \begin_document |
---|
4 | \begin_header |
---|
5 | \textclass scrartcl |
---|
6 | \begin_preamble |
---|
7 | \newcommand\blabl{} |
---|
8 | \end_preamble |
---|
9 | \use_default_options false |
---|
10 | \begin_modules |
---|
11 | theorems-ams |
---|
12 | theorems-ams-extended |
---|
13 | \end_modules |
---|
14 | \language english |
---|
15 | \inputencoding auto |
---|
16 | \font_roman lmodern |
---|
17 | \font_sans default |
---|
18 | \font_typewriter default |
---|
19 | \font_default_family default |
---|
20 | \font_sc false |
---|
21 | \font_osf false |
---|
22 | \font_sf_scale 100 |
---|
23 | \font_tt_scale 100 |
---|
24 | |
---|
25 | \graphics default |
---|
26 | \paperfontsize default |
---|
27 | \spacing single |
---|
28 | \use_hyperref true |
---|
29 | \pdf_bookmarks true |
---|
30 | \pdf_bookmarksnumbered false |
---|
31 | \pdf_bookmarksopen false |
---|
32 | \pdf_bookmarksopenlevel 1 |
---|
33 | \pdf_breaklinks false |
---|
34 | \pdf_pdfborder false |
---|
35 | \pdf_colorlinks false |
---|
36 | \pdf_backref false |
---|
37 | \pdf_pdfusetitle true |
---|
38 | \papersize default |
---|
39 | \use_geometry false |
---|
40 | \use_amsmath 1 |
---|
41 | \use_esint 0 |
---|
42 | \cite_engine basic |
---|
43 | \use_bibtopic false |
---|
44 | \paperorientation portrait |
---|
45 | \secnumdepth 3 |
---|
46 | \tocdepth 3 |
---|
47 | \paragraph_separation indent |
---|
48 | \defskip medskip |
---|
49 | \quotes_language english |
---|
50 | \papercolumns 1 |
---|
51 | \papersides 1 |
---|
52 | \paperpagestyle default |
---|
53 | \tracking_changes false |
---|
54 | \output_changes false |
---|
55 | \author "" |
---|
56 | \author "" |
---|
57 | \end_header |
---|
58 | |
---|
59 | \begin_body |
---|
60 | |
---|
61 | \begin_layout Standard |
---|
62 | \begin_inset FormulaMacro |
---|
63 | \newcommand{\isa}[1]{i_{\alpha#1}} |
---|
64 | {i_{\alpha#1}} |
---|
65 | \end_inset |
---|
66 | |
---|
67 | |
---|
68 | \begin_inset FormulaMacro |
---|
69 | \newcommand{\isb}[1]{i_{\beta#1}} |
---|
70 | {i_{\beta#1}} |
---|
71 | \end_inset |
---|
72 | |
---|
73 | |
---|
74 | \begin_inset FormulaMacro |
---|
75 | \newcommand{\Dt}{\Delta t} |
---|
76 | {\Delta t} |
---|
77 | \end_inset |
---|
78 | |
---|
79 | |
---|
80 | \begin_inset FormulaMacro |
---|
81 | \newcommand{\om}{\omega} |
---|
82 | {\omega} |
---|
83 | \end_inset |
---|
84 | |
---|
85 | |
---|
86 | \begin_inset FormulaMacro |
---|
87 | \newcommand{\th}{\vartheta} |
---|
88 | {\vartheta} |
---|
89 | \end_inset |
---|
90 | |
---|
91 | |
---|
92 | \begin_inset FormulaMacro |
---|
93 | \newcommand{\usa}[1]{u_{\alpha#1}} |
---|
94 | {u_{\alpha#1}} |
---|
95 | \end_inset |
---|
96 | |
---|
97 | |
---|
98 | \begin_inset FormulaMacro |
---|
99 | \newcommand{\usb}[1]{u_{\beta#1}} |
---|
100 | {u_{\beta#1}} |
---|
101 | \end_inset |
---|
102 | |
---|
103 | |
---|
104 | \end_layout |
---|
105 | |
---|
106 | \begin_layout Title |
---|
107 | PMSM system description |
---|
108 | \end_layout |
---|
109 | |
---|
110 | \begin_layout Section |
---|
111 | Model of PMSM Drive |
---|
112 | \end_layout |
---|
113 | |
---|
114 | \begin_layout Standard |
---|
115 | Permanent magnet synchronous machine (PMSM) drive with surface magnets on |
---|
116 | the rotor is described by conventional equations of PMSM in the stationary |
---|
117 | reference frame: |
---|
118 | \begin_inset Formula \begin{align} |
---|
119 | \frac{d\isa{}}{dt} & =-\frac{R_{s}}{L_{s}}\isa{}+\frac{\Psi_{PM}}{L_{s}}\omega_{me}\sin\th+\frac{\usa{}}{L_{s}},\nonumber \\ |
---|
120 | \frac{d\isb{}}{dt} & =-\frac{R_{s}}{L_{s}}\isb{}-\frac{\Psi_{PM}}{L_{s}}\omega_{me}\cos\th+\frac{\usb{}}{L_{s}},\label{eq:simulator}\\ |
---|
121 | \frac{d\om}{dt} & =\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{}\cos(\th)-\isa{}\sin(\th)\right)-\frac{B}{J}\om-\frac{p_{p}}{J}T_{L},\nonumber \\ |
---|
122 | \frac{d\th}{dt} & =\omega_{me}.\nonumber \end{align} |
---|
123 | |
---|
124 | \end_inset |
---|
125 | |
---|
126 | Here, |
---|
127 | \begin_inset Formula $\isa{}$ |
---|
128 | \end_inset |
---|
129 | |
---|
130 | , |
---|
131 | \begin_inset Formula $\isb{}$ |
---|
132 | \end_inset |
---|
133 | |
---|
134 | , |
---|
135 | \begin_inset Formula $\usa{}$ |
---|
136 | \end_inset |
---|
137 | |
---|
138 | and |
---|
139 | \begin_inset Formula $\usb{}$ |
---|
140 | \end_inset |
---|
141 | |
---|
142 | represent stator current and voltage in the stationary reference frame, |
---|
143 | respectively; |
---|
144 | \begin_inset Formula $\om$ |
---|
145 | \end_inset |
---|
146 | |
---|
147 | is electrical rotor speed and |
---|
148 | \begin_inset Formula $\th$ |
---|
149 | \end_inset |
---|
150 | |
---|
151 | is electrical rotor position. |
---|
152 | |
---|
153 | \begin_inset Formula $R_{s}$ |
---|
154 | \end_inset |
---|
155 | |
---|
156 | and |
---|
157 | \begin_inset Formula $L_{s}$ |
---|
158 | \end_inset |
---|
159 | |
---|
160 | is stator resistance and inductance respectively, |
---|
161 | \begin_inset Formula $\Psi_{pm}$ |
---|
162 | \end_inset |
---|
163 | |
---|
164 | is the flux of permanent magnets on the rotor, |
---|
165 | \begin_inset Formula $B$ |
---|
166 | \end_inset |
---|
167 | |
---|
168 | is friction and |
---|
169 | \begin_inset Formula $T_{L}$ |
---|
170 | \end_inset |
---|
171 | |
---|
172 | is load torque, |
---|
173 | \begin_inset Formula $J$ |
---|
174 | \end_inset |
---|
175 | |
---|
176 | is moment of inertia, |
---|
177 | \begin_inset Formula $p_{p}$ |
---|
178 | \end_inset |
---|
179 | |
---|
180 | is the number of pole pairs, |
---|
181 | \begin_inset Formula $k_{p}$ |
---|
182 | \end_inset |
---|
183 | |
---|
184 | is the Park constant. |
---|
185 | \end_layout |
---|
186 | |
---|
187 | \begin_layout Standard |
---|
188 | The sensor-less control scenario arise when sensors of the speed and position |
---|
189 | ( |
---|
190 | \begin_inset Formula $\om$ |
---|
191 | \end_inset |
---|
192 | |
---|
193 | and |
---|
194 | \begin_inset Formula $\th$ |
---|
195 | \end_inset |
---|
196 | |
---|
197 | ) are missing (from various reasons). |
---|
198 | Then, the only observed variables are: |
---|
199 | \begin_inset Formula \begin{equation} |
---|
200 | y_{t}=\left[\begin{array}{c} |
---|
201 | \isa{}(t),\isb{}(t),\usa{}(t),\usb{}(t)\end{array}\right].\label{eq:obs}\end{equation} |
---|
202 | |
---|
203 | \end_inset |
---|
204 | |
---|
205 | Which are, however, observed only up to some precision. |
---|
206 | \end_layout |
---|
207 | |
---|
208 | \begin_layout Standard |
---|
209 | Discretization of the model ( |
---|
210 | \begin_inset CommandInset ref |
---|
211 | LatexCommand ref |
---|
212 | reference "eq:simulator" |
---|
213 | |
---|
214 | \end_inset |
---|
215 | |
---|
216 | ) was performed using Euler method with the following result: |
---|
217 | \begin_inset Formula \begin{align*} |
---|
218 | \isa{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}},\\ |
---|
219 | \isb{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}},\\ |
---|
220 | \om_{t+1} & =(1-\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\ |
---|
221 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*} |
---|
222 | |
---|
223 | \end_inset |
---|
224 | |
---|
225 | In this work, we consider parameters of the model known, we can make the |
---|
226 | following substitutions to simplify notation, |
---|
227 | \begin_inset Formula $a=1-\frac{R_{s}}{L_{s}}\Dt$ |
---|
228 | \end_inset |
---|
229 | |
---|
230 | , |
---|
231 | \begin_inset Formula $b=\frac{\Psi_{pm}}{L_{s}}\Dt$ |
---|
232 | \end_inset |
---|
233 | |
---|
234 | , |
---|
235 | \begin_inset Formula $c=\frac{\Dt}{L_{s}}$ |
---|
236 | \end_inset |
---|
237 | |
---|
238 | , |
---|
239 | \begin_inset Formula $d=1-\frac{B}{J}\Dt$ |
---|
240 | \end_inset |
---|
241 | |
---|
242 | , |
---|
243 | \family roman |
---|
244 | \series medium |
---|
245 | \shape up |
---|
246 | \size normal |
---|
247 | \emph off |
---|
248 | \bar no |
---|
249 | \noun off |
---|
250 | \color none |
---|
251 | |
---|
252 | \begin_inset Formula $e=\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}$ |
---|
253 | \end_inset |
---|
254 | |
---|
255 | , which results in a simplified model: |
---|
256 | \family default |
---|
257 | \series default |
---|
258 | \shape default |
---|
259 | \size default |
---|
260 | \emph default |
---|
261 | \bar default |
---|
262 | \noun default |
---|
263 | \color inherit |
---|
264 | |
---|
265 | \begin_inset Formula \begin{align} |
---|
266 | \isa{,t+1} & =a\,\isa{,t}+b\omega_{t}\sin\vartheta_{t}+c\usa{,t},\nonumber \\ |
---|
267 | \isb{,t+1} & =a\,\isb{,t}-b\omega_{t}\cos\vartheta_{t}+c\usb{,t},\label{eq:model-simple}\\ |
---|
268 | \om_{t+1} & =d\om_{t}+e\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right),\nonumber \\ |
---|
269 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\nonumber \end{align} |
---|
270 | |
---|
271 | \end_inset |
---|
272 | |
---|
273 | |
---|
274 | \end_layout |
---|
275 | |
---|
276 | \begin_layout Standard |
---|
277 | The above equations can be aggregated into state |
---|
278 | \begin_inset Formula $x_{t}=[\isa{,t},\isb{,t},\om_{t},\th_{t}]$ |
---|
279 | \end_inset |
---|
280 | |
---|
281 | will be denoted as |
---|
282 | \begin_inset Formula $x_{t+1}=g(x_{t},u_{t})$ |
---|
283 | \end_inset |
---|
284 | |
---|
285 | . |
---|
286 | \end_layout |
---|
287 | |
---|
288 | \begin_layout Subsection |
---|
289 | Gaussian model of disturbances |
---|
290 | \end_layout |
---|
291 | |
---|
292 | \begin_layout Standard |
---|
293 | This model is motivated by the well known Kalman filter, which is optimal |
---|
294 | for linear system with Gaussian noise. |
---|
295 | Hence, we model all disturbances to have covariance matrices |
---|
296 | \begin_inset Formula $Q_{t}$ |
---|
297 | \end_inset |
---|
298 | |
---|
299 | and |
---|
300 | \begin_inset Formula $R_{t}$ |
---|
301 | \end_inset |
---|
302 | |
---|
303 | for the state |
---|
304 | \begin_inset Formula $x_{t}$ |
---|
305 | \end_inset |
---|
306 | |
---|
307 | and observations |
---|
308 | \begin_inset Formula $y_{t}$ |
---|
309 | \end_inset |
---|
310 | |
---|
311 | respectively. |
---|
312 | \begin_inset Formula \begin{align} |
---|
313 | x_{t+1} & \sim\mathcal{N}(g(x_{t}),Q_{t})\label{eq:model}\\ |
---|
314 | y_{t} & \sim\mathcal{N}([\isa{,t},\isb{,t}]',R_{t})\nonumber \end{align} |
---|
315 | |
---|
316 | \end_inset |
---|
317 | |
---|
318 | |
---|
319 | \end_layout |
---|
320 | |
---|
321 | \begin_layout Standard |
---|
322 | Under this assumptions, Bayesian estimation of the state, |
---|
323 | \begin_inset Formula $x_{t}$ |
---|
324 | \end_inset |
---|
325 | |
---|
326 | , can be approximated by so called Extended Kalman filter which approximates |
---|
327 | posterior density of the state by a Gaussian |
---|
328 | \begin_inset Formula \[ |
---|
329 | f(x_{t}|y_{1}\ldots y_{t})=\mathcal{N}(\hat{x}_{t},S_{t}).\] |
---|
330 | |
---|
331 | \end_inset |
---|
332 | |
---|
333 | Its sufficient statistics |
---|
334 | \begin_inset Formula $S_{t}=\left[\hat{x}_{t},P_{t}\right]$ |
---|
335 | \end_inset |
---|
336 | |
---|
337 | is evaluated recursively as follows: |
---|
338 | \begin_inset Formula \begin{eqnarray} |
---|
339 | \hat{x}_{t} & = & g(\hat{x}_{t-1})-K\left(y_{t}-h(\hat{x}_{t-1})\right).\label{eq:ekf_mean}\\ |
---|
340 | R_{y} & = & CP_{t-1}C'+R_{t},\nonumber \\ |
---|
341 | K & = & P_{t-1}C'R_{y}^{-1},\nonumber \\ |
---|
342 | S_{t} & = & P_{t-1}-P_{t-1}C'R_{y}^{-1}CP_{t-1},\\ |
---|
343 | P_{t} & = & AS_{t}A'+Q_{t}.\label{eq:ekf_cov}\end{eqnarray} |
---|
344 | |
---|
345 | \end_inset |
---|
346 | |
---|
347 | where |
---|
348 | \begin_inset Formula $A=\frac{d}{dx_{t}}g(x_{t})$ |
---|
349 | \end_inset |
---|
350 | |
---|
351 | , |
---|
352 | \begin_inset Formula $C=\frac{d}{dx_{t}}h(x_{t})$ |
---|
353 | \end_inset |
---|
354 | |
---|
355 | , |
---|
356 | \begin_inset Formula $g(x_{t})$ |
---|
357 | \end_inset |
---|
358 | |
---|
359 | is model ( |
---|
360 | \begin_inset CommandInset ref |
---|
361 | LatexCommand ref |
---|
362 | reference "eq:model-simple" |
---|
363 | |
---|
364 | \end_inset |
---|
365 | |
---|
366 | ) and |
---|
367 | \begin_inset Formula $h(x_{t})$ |
---|
368 | \end_inset |
---|
369 | |
---|
370 | direct observation of |
---|
371 | \begin_inset Formula $y_{t}=[\isa{,t},\isb{,t}]$ |
---|
372 | \end_inset |
---|
373 | |
---|
374 | , i.e. |
---|
375 | \begin_inset Formula \[ |
---|
376 | A=\left[\begin{array}{cccc} |
---|
377 | a & 0 & b\sin\th & b\om\cos\th\\ |
---|
378 | 0 & a & -b\cos\th & b\om\sin\th\\ |
---|
379 | -e\sin\th & e\cos\th & d & -e(\isb{}\sin\th+\isa{}\cos\th)\\ |
---|
380 | 0 & 0 & \Dt & 1\end{array}\right],\quad C=\left[\begin{array}{cccc} |
---|
381 | 1 & 0 & 0 & 0\\ |
---|
382 | 0 & 1 & 0 & 0\end{array}\right]\] |
---|
383 | |
---|
384 | \end_inset |
---|
385 | |
---|
386 | |
---|
387 | \end_layout |
---|
388 | |
---|
389 | \begin_layout Standard |
---|
390 | \begin_inset Formula \[ |
---|
391 | B=\left[\begin{array}{cc} |
---|
392 | c & 0\\ |
---|
393 | 0 & c\\ |
---|
394 | 0 & 0\\ |
---|
395 | 0 & 0\end{array}\right]\] |
---|
396 | |
---|
397 | \end_inset |
---|
398 | |
---|
399 | |
---|
400 | \end_layout |
---|
401 | |
---|
402 | \begin_layout Standard |
---|
403 | Covariance matrices of the system |
---|
404 | \begin_inset Formula $Q$ |
---|
405 | \end_inset |
---|
406 | |
---|
407 | and |
---|
408 | \begin_inset Formula $R$ |
---|
409 | \end_inset |
---|
410 | |
---|
411 | are supposed to be known. |
---|
412 | \end_layout |
---|
413 | |
---|
414 | \begin_layout Subsection |
---|
415 | Test system |
---|
416 | \end_layout |
---|
417 | |
---|
418 | \begin_layout Standard |
---|
419 | A real PMSM system on which the algorithms will be tested has parameters: |
---|
420 | \end_layout |
---|
421 | |
---|
422 | \begin_layout Standard |
---|
423 | \begin_inset Formula \begin{eqnarray*} |
---|
424 | R_{s} & = & 0.28;\\ |
---|
425 | L_{s} & = & 0.003465;\\ |
---|
426 | \Psi_{pm} & = & 0.1989;\\ |
---|
427 | k_{p} & = & 1.5\\ |
---|
428 | p & = & 4.0;\\ |
---|
429 | J & = & 0.04;\\ |
---|
430 | \Delta t & = & 0.000125\end{eqnarray*} |
---|
431 | |
---|
432 | \end_inset |
---|
433 | |
---|
434 | which yields |
---|
435 | \begin_inset Formula \begin{eqnarray*} |
---|
436 | a & = & 0.9898\\ |
---|
437 | b & = & 0.0072\\ |
---|
438 | c & = & 0.0361\\ |
---|
439 | d & = & 1\\ |
---|
440 | e & = & 0.0149\end{eqnarray*} |
---|
441 | |
---|
442 | \end_inset |
---|
443 | |
---|
444 | The covaraince matrices |
---|
445 | \begin_inset Formula $Q$ |
---|
446 | \end_inset |
---|
447 | |
---|
448 | and |
---|
449 | \begin_inset Formula $R$ |
---|
450 | \end_inset |
---|
451 | |
---|
452 | are assumed to be known. |
---|
453 | For the initial tests, we can use the following values: |
---|
454 | \end_layout |
---|
455 | |
---|
456 | \begin_layout Standard |
---|
457 | \begin_inset Formula \begin{eqnarray*} |
---|
458 | Q & = & \mathrm{diag}(0.0013,0.0013,5e-6,1e-10),\\ |
---|
459 | R & = & \mathrm{diag}(0.0006,0.0006).\end{eqnarray*} |
---|
460 | |
---|
461 | \end_inset |
---|
462 | |
---|
463 | |
---|
464 | \end_layout |
---|
465 | |
---|
466 | \begin_layout Standard |
---|
467 | Limits: |
---|
468 | \begin_inset Formula \begin{align*} |
---|
469 | u_{\alpha,max} & =50V, & u_{\alpha,min} & =-50V,\\ |
---|
470 | u_{\beta,max} & =50V. & u_{\beta,min} & =-50V,\end{align*} |
---|
471 | |
---|
472 | \end_inset |
---|
473 | |
---|
474 | |
---|
475 | \end_layout |
---|
476 | |
---|
477 | \begin_layout Standard |
---|
478 | Perhaps better: |
---|
479 | \begin_inset Formula \[ |
---|
480 | u_{\alpha}^{2}+u_{\beta}^{2}<100^{2}.\] |
---|
481 | |
---|
482 | \end_inset |
---|
483 | |
---|
484 | |
---|
485 | \end_layout |
---|
486 | |
---|
487 | \begin_layout Section |
---|
488 | Control |
---|
489 | \end_layout |
---|
490 | |
---|
491 | \begin_layout Standard |
---|
492 | The task is to reach predefined speed |
---|
493 | \begin_inset Formula $\overline{\omega}_{t}$ |
---|
494 | \end_inset |
---|
495 | |
---|
496 | . |
---|
497 | \end_layout |
---|
498 | |
---|
499 | \begin_layout Standard |
---|
500 | For simplicity, we will assume additive loss function: |
---|
501 | \begin_inset Formula \begin{eqnarray*} |
---|
502 | l(x_{t},u_{t}) & = & (\omega_{t}-\overline{\omega}_{t})^{2}+q(\usa{,t}^{2}+\usb{,t}^{2}).\\ |
---|
503 | & = & (\omega_{t}-\overline{\omega}_{t})\Xi(\omega_{t}-\overline{\omega}_{t})+[\usa t,\usb t]\underbrace{\left[\begin{array}{cc} |
---|
504 | \upsilon & 0\\ |
---|
505 | 0 & \upsilon\end{array}\right]}_{\Upsilon}\left[\begin{array}{c} |
---|
506 | \usa t\\ |
---|
507 | \usb t\end{array}\right]\end{eqnarray*} |
---|
508 | |
---|
509 | \end_inset |
---|
510 | |
---|
511 | Here, |
---|
512 | \begin_inset Formula $\Upsilon$ |
---|
513 | \end_inset |
---|
514 | |
---|
515 | is the chosen penalization of the inputs, which remains to be tuned. |
---|
516 | \end_layout |
---|
517 | |
---|
518 | \begin_layout Standard |
---|
519 | |
---|
520 | \series bold |
---|
521 | Note |
---|
522 | \series default |
---|
523 | : classical notation of penalization matrices is |
---|
524 | \begin_inset Formula $Q$ |
---|
525 | \end_inset |
---|
526 | |
---|
527 | and |
---|
528 | \begin_inset Formula $R$ |
---|
529 | \end_inset |
---|
530 | |
---|
531 | , but it conflicts wit |
---|
532 | \begin_inset Formula $Q$ |
---|
533 | \end_inset |
---|
534 | |
---|
535 | and |
---|
536 | \begin_inset Formula $R$ |
---|
537 | \end_inset |
---|
538 | |
---|
539 | in ( |
---|
540 | \begin_inset CommandInset ref |
---|
541 | LatexCommand ref |
---|
542 | reference "eq:model" |
---|
543 | |
---|
544 | \end_inset |
---|
545 | |
---|
546 | ). |
---|
547 | \end_layout |
---|
548 | |
---|
549 | \begin_layout Standard |
---|
550 | Following the standard dynamic programming approach, optimization of the |
---|
551 | loss function can be done recursively, as follows: |
---|
552 | \begin_inset Formula \[ |
---|
553 | V(x_{t-1},u_{t-1})=\arg\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(x_{t},u_{t})\right\} ,\] |
---|
554 | |
---|
555 | \end_inset |
---|
556 | |
---|
557 | where |
---|
558 | \begin_inset Formula $V(x_{t},u_{t})$ |
---|
559 | \end_inset |
---|
560 | |
---|
561 | is the Bellman function. |
---|
562 | Since the model evolution is stochastic, we can reformulate it in terms |
---|
563 | of sufficient statistics, |
---|
564 | \begin_inset Formula $S$ |
---|
565 | \end_inset |
---|
566 | |
---|
567 | as follows: |
---|
568 | \begin_inset Formula \[ |
---|
569 | V(S_{t-1})=\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(S_{t})\right\} .\] |
---|
570 | |
---|
571 | \end_inset |
---|
572 | |
---|
573 | |
---|
574 | \end_layout |
---|
575 | |
---|
576 | \begin_layout Standard |
---|
577 | Representation of the Bellman function depends on chosen approximation. |
---|
578 | \end_layout |
---|
579 | |
---|
580 | \begin_layout Subsection |
---|
581 | LQG control |
---|
582 | \end_layout |
---|
583 | |
---|
584 | \begin_layout Standard |
---|
585 | Control of linear state-space model with Gaussian noise |
---|
586 | \begin_inset Formula \begin{eqnarray*} |
---|
587 | x_{t} & = & Ax_{t-1}+Bu_{t}+Q^{\frac{1}{2}}v_{t},\\ |
---|
588 | y_{t} & = & Cx_{t}+Du_{t}+R^{\frac{1}{2}}w_{t}.\end{eqnarray*} |
---|
589 | |
---|
590 | \end_inset |
---|
591 | |
---|
592 | to minimize loss function |
---|
593 | \begin_inset Formula \[ |
---|
594 | L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+u_{t}'\Upsilon u_{t}.\] |
---|
595 | |
---|
596 | \end_inset |
---|
597 | |
---|
598 | |
---|
599 | \end_layout |
---|
600 | |
---|
601 | \begin_layout Standard |
---|
602 | Optimal solution in the sense of dynamic programming on horizon |
---|
603 | \begin_inset Formula $t+h$ |
---|
604 | \end_inset |
---|
605 | |
---|
606 | is: |
---|
607 | \begin_inset Newline newline |
---|
608 | \end_inset |
---|
609 | |
---|
610 | |
---|
611 | \begin_inset Formula \begin{eqnarray*} |
---|
612 | u_{t} & = & L_{t}\left(\hat{x}_{t}-\overline{x}_{t}\right),\\ |
---|
613 | L_{t} & = & -(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1}A,\\ |
---|
614 | S_{t} & = & A'(S_{t+1}-S_{t+1}B(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1})A+\Xi,\end{eqnarray*} |
---|
615 | |
---|
616 | \end_inset |
---|
617 | |
---|
618 | This solution is certainty equivalent, i.e. |
---|
619 | only the first moment, |
---|
620 | \begin_inset Formula $\hat{x}$ |
---|
621 | \end_inset |
---|
622 | |
---|
623 | , of the Kalman filter is used. |
---|
624 | \end_layout |
---|
625 | |
---|
626 | \begin_layout Subsection |
---|
627 | PI control |
---|
628 | \end_layout |
---|
629 | |
---|
630 | \begin_layout Standard |
---|
631 | The classical control is based on transformation to |
---|
632 | \begin_inset Formula $dq$ |
---|
633 | \end_inset |
---|
634 | |
---|
635 | reference frame: |
---|
636 | \begin_inset Formula \begin{eqnarray*} |
---|
637 | i_{d} & = & i_{\alpha}\cos(\vartheta)+i_{\beta}\sin(\vartheta),\\ |
---|
638 | i_{q} & = & i_{\beta}\cos(\vartheta)-i_{\alpha}\sin(\vartheta).\end{eqnarray*} |
---|
639 | |
---|
640 | \end_inset |
---|
641 | |
---|
642 | Desired |
---|
643 | \begin_inset Formula $i_{q}$ |
---|
644 | \end_inset |
---|
645 | |
---|
646 | current, |
---|
647 | \begin_inset Formula $\overline{i}_{q}$ |
---|
648 | \end_inset |
---|
649 | |
---|
650 | , is derived using PI controller |
---|
651 | \begin_inset Formula \[ |
---|
652 | \overline{i}_{q}=PI(\overline{\omega}-\omega,P_{i},I_{i}).\] |
---|
653 | |
---|
654 | \end_inset |
---|
655 | |
---|
656 | This current needs to be achieved through voltages |
---|
657 | \begin_inset Formula $u_{d},u_{q}$ |
---|
658 | \end_inset |
---|
659 | |
---|
660 | which are again obtained from a PI controller |
---|
661 | \begin_inset Formula \begin{eqnarray*} |
---|
662 | u_{d} & = & PI(-i_{d},P_{u},I_{u}),\\ |
---|
663 | u_{q} & = & PI(\overline{i}_{q}-i_{q},P_{u},I_{u}).\end{eqnarray*} |
---|
664 | |
---|
665 | \end_inset |
---|
666 | |
---|
667 | These are compensated (for some reason) as follows: |
---|
668 | \begin_inset Formula \begin{eqnarray*} |
---|
669 | u_{d} & = & u_{d}-L_{S}\omega\overline{i}_{q},\\ |
---|
670 | u_{q} & = & u_{q}+\Psi_{pm}\omega.\end{eqnarray*} |
---|
671 | |
---|
672 | \end_inset |
---|
673 | |
---|
674 | Conversion to |
---|
675 | \begin_inset Formula $u_{\alpha},u_{\beta}$ |
---|
676 | \end_inset |
---|
677 | |
---|
678 | is |
---|
679 | \begin_inset Formula \begin{align*} |
---|
680 | u_{\alpha} & =|U|\cos(\phi), & u_{\beta} & =|U|\sin(\phi)\\ |
---|
681 | |U| & =\sqrt{u_{d}^{2}+u_{q}^{2}}, & \phi & =\begin{cases} |
---|
682 | \arctan(\frac{u_{q}}{u_{d}})+\vartheta & u_{d}\ge0\\ |
---|
683 | \arctan(\frac{u_{q}}{u_{d}})+\pi+\vartheta & u_{d}<0\end{cases}\end{align*} |
---|
684 | |
---|
685 | \end_inset |
---|
686 | |
---|
687 | |
---|
688 | \end_layout |
---|
689 | |
---|
690 | \begin_layout Standard |
---|
691 | PI controller is defined as follows: |
---|
692 | \begin_inset Formula \begin{eqnarray*} |
---|
693 | x & = & PI(\epsilon,P,I)\\ |
---|
694 | & = & P\epsilon+I(S_{t-1}+\epsilon)\\ |
---|
695 | S_{t} & = & S_{t-1}+\epsilon\end{eqnarray*} |
---|
696 | |
---|
697 | \end_inset |
---|
698 | |
---|
699 | Constants for the system: |
---|
700 | \begin_inset Formula \[ |
---|
701 | P_{i}=3,\,\, I_{i}=0.00375,\,\, P_{u}=20,\,\, I_{u}=0.5.\] |
---|
702 | |
---|
703 | \end_inset |
---|
704 | |
---|
705 | The requested values for |
---|
706 | \begin_inset Formula $\omega$ |
---|
707 | \end_inset |
---|
708 | |
---|
709 | should be kept in interval |
---|
710 | \begin_inset Formula $<-30,30>$ |
---|
711 | \end_inset |
---|
712 | |
---|
713 | . |
---|
714 | \end_layout |
---|
715 | |
---|
716 | \begin_layout Subsection |
---|
717 | Cautious LQG control |
---|
718 | \end_layout |
---|
719 | |
---|
720 | \begin_layout Standard |
---|
721 | Uncertainty in |
---|
722 | \begin_inset Formula $A$ |
---|
723 | \end_inset |
---|
724 | |
---|
725 | . |
---|
726 | \end_layout |
---|
727 | |
---|
728 | \begin_layout Standard |
---|
729 | Sigma points: |
---|
730 | \begin_inset Formula $x^{(i)}=\hat{x}+hv_{i}$ |
---|
731 | \end_inset |
---|
732 | |
---|
733 | , |
---|
734 | \begin_inset Formula $v_{i}$ |
---|
735 | \end_inset |
---|
736 | |
---|
737 | are eigenvectors of |
---|
738 | \begin_inset Formula $P$ |
---|
739 | \end_inset |
---|
740 | |
---|
741 | . |
---|
742 | \end_layout |
---|
743 | |
---|
744 | \begin_layout Standard |
---|
745 | \begin_inset Formula \begin{eqnarray*} |
---|
746 | E\{x'A(x)QA(x)x\} & = & \frac{1}{n}\sum x'A(x^{(i)})QA^{(i)}(x)x\\ |
---|
747 | & = & x'Zx'\end{eqnarray*} |
---|
748 | |
---|
749 | \end_inset |
---|
750 | |
---|
751 | |
---|
752 | \end_layout |
---|
753 | |
---|
754 | \begin_layout Standard |
---|
755 | Uncented transform... |
---|
756 | \end_layout |
---|
757 | |
---|
758 | \begin_layout Subsection |
---|
759 | Poor-man's dual LQG control |
---|
760 | \end_layout |
---|
761 | |
---|
762 | \begin_layout Standard |
---|
763 | Various heuristic solutions to dual extension of LQG has been proposed. |
---|
764 | Most of them is based on approximation of the loss function |
---|
765 | \begin_inset Formula \[ |
---|
766 | L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+(u_{t}-\overline{u}_{t})'\Upsilon(u_{t}-\overline{u}_{t})+DUAL\_TERM.\] |
---|
767 | |
---|
768 | \end_inset |
---|
769 | |
---|
770 | where DUAL_TERM is typically a function of |
---|
771 | \begin_inset Formula $P_{t+2}$ |
---|
772 | \end_inset |
---|
773 | |
---|
774 | . |
---|
775 | |
---|
776 | \end_layout |
---|
777 | |
---|
778 | \begin_layout Standard |
---|
779 | To be continued... |
---|
780 | \end_layout |
---|
781 | |
---|
782 | \begin_layout Subsection |
---|
783 | Test Scenarios |
---|
784 | \end_layout |
---|
785 | |
---|
786 | \begin_layout Standard |
---|
787 | With almost full information, design of the control strategy should be almost |
---|
788 | trivial: |
---|
789 | \begin_inset Formula \begin{eqnarray*} |
---|
790 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
791 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,0.01]).\end{eqnarray*} |
---|
792 | |
---|
793 | \end_inset |
---|
794 | |
---|
795 | |
---|
796 | \end_layout |
---|
797 | |
---|
798 | \begin_layout Standard |
---|
799 | The difficulty arise with growing initial covariance matrix: |
---|
800 | \begin_inset Formula \begin{eqnarray*} |
---|
801 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
802 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,1]).\end{eqnarray*} |
---|
803 | |
---|
804 | \end_inset |
---|
805 | |
---|
806 | |
---|
807 | \end_layout |
---|
808 | |
---|
809 | \begin_layout Standard |
---|
810 | Or even worse: |
---|
811 | \begin_inset Formula \begin{eqnarray*} |
---|
812 | \hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\ |
---|
813 | P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,10]).\end{eqnarray*} |
---|
814 | |
---|
815 | \end_inset |
---|
816 | |
---|
817 | ==\SpecialChar \- |
---|
818 | = |
---|
819 | \end_layout |
---|
820 | |
---|
821 | \begin_layout Standard |
---|
822 | The requested value |
---|
823 | \begin_inset Formula $\overline{\omega}_{t}=1.0015.$ |
---|
824 | \end_inset |
---|
825 | |
---|
826 | |
---|
827 | \end_layout |
---|
828 | |
---|
829 | \begin_layout Conjecture |
---|
830 | It is sufficient to consider hyper-state |
---|
831 | \begin_inset Formula $H=[\hat{i}_{\alpha},\hat{i}_{\beta},\hat{\omega},\hat{\vartheta},P(3,3),P(4,4)]$ |
---|
832 | \end_inset |
---|
833 | |
---|
834 | . |
---|
835 | \end_layout |
---|
836 | |
---|
837 | \begin_layout Conjecture |
---|
838 | \begin_inset CommandInset bibtex |
---|
839 | LatexCommand bibtex |
---|
840 | bibfiles "bibtex/vs,bibtex/vs-world,bibtex/world_classics,bibtex/world,new_bib_PS" |
---|
841 | options "plain" |
---|
842 | |
---|
843 | \end_inset |
---|
844 | |
---|
845 | |
---|
846 | \end_layout |
---|
847 | |
---|
848 | \end_body |
---|
849 | \end_document |
---|