root/applications/dual/texts/pmsm_system.lyx @ 1305

Revision 1288, 20.5 kB (checked in by smidl, 14 years ago)

dq souradnice

Line 
1#LyX 1.6.7 created this file. For more info see http://www.lyx.org/
2\lyxformat 345
3\begin_document
4\begin_header
5\textclass scrartcl
6\begin_preamble
7\newcommand\blabl{}
8\end_preamble
9\use_default_options false
10\begin_modules
11theorems-ams
12theorems-ams-extended
13\end_modules
14\language english
15\inputencoding auto
16\font_roman lmodern
17\font_sans default
18\font_typewriter default
19\font_default_family default
20\font_sc false
21\font_osf false
22\font_sf_scale 100
23\font_tt_scale 100
24
25\graphics default
26\paperfontsize default
27\spacing single
28\use_hyperref true
29\pdf_bookmarks true
30\pdf_bookmarksnumbered false
31\pdf_bookmarksopen false
32\pdf_bookmarksopenlevel 1
33\pdf_breaklinks false
34\pdf_pdfborder false
35\pdf_colorlinks false
36\pdf_backref false
37\pdf_pdfusetitle true
38\papersize default
39\use_geometry false
40\use_amsmath 1
41\use_esint 0
42\cite_engine basic
43\use_bibtopic false
44\paperorientation portrait
45\secnumdepth 3
46\tocdepth 3
47\paragraph_separation indent
48\defskip medskip
49\quotes_language english
50\papercolumns 1
51\papersides 1
52\paperpagestyle default
53\tracking_changes false
54\output_changes false
55\author ""
56\author ""
57\end_header
58
59\begin_body
60
61\begin_layout Standard
62\begin_inset FormulaMacro
63\newcommand{\isa}[1]{i_{\alpha#1}}
64{i_{\alpha#1}}
65\end_inset
66
67
68\begin_inset FormulaMacro
69\newcommand{\isb}[1]{i_{\beta#1}}
70{i_{\beta#1}}
71\end_inset
72
73
74\begin_inset FormulaMacro
75\newcommand{\Dt}{\Delta t}
76{\Delta t}
77\end_inset
78
79
80\begin_inset FormulaMacro
81\newcommand{\om}{\omega}
82{\omega}
83\end_inset
84
85
86\begin_inset FormulaMacro
87\newcommand{\th}{\vartheta}
88{\vartheta}
89\end_inset
90
91
92\begin_inset FormulaMacro
93\newcommand{\usa}[1]{u_{\alpha#1}}
94{u_{\alpha#1}}
95\end_inset
96
97
98\begin_inset FormulaMacro
99\newcommand{\usb}[1]{u_{\beta#1}}
100{u_{\beta#1}}
101\end_inset
102
103
104\end_layout
105
106\begin_layout Title
107PMSM system description
108\end_layout
109
110\begin_layout Section
111Model of PMSM Drive
112\end_layout
113
114\begin_layout Standard
115Permanent magnet synchronous machine (PMSM) drive with surface magnets on
116 the rotor is described by conventional equations of PMSM in the stationary
117 reference frame:
118\begin_inset Formula \begin{align}
119\frac{d\isa{}}{dt} & =-\frac{R_{s}}{L_{s}}\isa{}+\frac{\Psi_{PM}}{L_{s}}\omega_{me}\sin\th+\frac{\usa{}}{L_{s}},\nonumber \\
120\frac{d\isb{}}{dt} & =-\frac{R_{s}}{L_{s}}\isb{}-\frac{\Psi_{PM}}{L_{s}}\omega_{me}\cos\th+\frac{\usb{}}{L_{s}},\label{eq:simulator}\\
121\frac{d\om}{dt} & =\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{}\cos(\th)-\isa{}\sin(\th)\right)-\frac{B}{J}\om-\frac{p_{p}}{J}T_{L},\nonumber \\
122\frac{d\th}{dt} & =\omega_{me}.\nonumber \end{align}
123
124\end_inset
125
126Here,
127\begin_inset Formula $\isa{}$
128\end_inset
129
130,
131\begin_inset Formula $\isb{}$
132\end_inset
133
134,
135\begin_inset Formula $\usa{}$
136\end_inset
137
138 and
139\begin_inset Formula $\usb{}$
140\end_inset
141
142 represent stator current and voltage in the stationary reference frame,
143 respectively;
144\begin_inset Formula $\om$
145\end_inset
146
147 is electrical rotor speed and
148\begin_inset Formula $\th$
149\end_inset
150
151 is electrical rotor position.
152 
153\begin_inset Formula $R_{s}$
154\end_inset
155
156 and
157\begin_inset Formula $L_{s}$
158\end_inset
159
160 is stator resistance and inductance respectively,
161\begin_inset Formula $\Psi_{pm}$
162\end_inset
163
164 is the flux of permanent magnets on the rotor,
165\begin_inset Formula $B$
166\end_inset
167
168 is friction and
169\begin_inset Formula $T_{L}$
170\end_inset
171
172 is load torque,
173\begin_inset Formula $J$
174\end_inset
175
176 is moment of inertia,
177\begin_inset Formula $p_{p}$
178\end_inset
179
180 is the number of pole pairs,
181\begin_inset Formula $k_{p}$
182\end_inset
183
184 is the Park constant.
185\end_layout
186
187\begin_layout Standard
188The sensor-less control scenario arise when sensors of the speed and position
189 (
190\begin_inset Formula $\om$
191\end_inset
192
193 and
194\begin_inset Formula $\th$
195\end_inset
196
197) are missing (from various reasons).
198 Then, the only observed variables are:
199\begin_inset Formula \begin{equation}
200y_{t}=\left[\begin{array}{c}
201\isa{}(t),\isb{}(t),\usa{}(t),\usb{}(t)\end{array}\right].\label{eq:obs}\end{equation}
202
203\end_inset
204
205Which are, however, observed only up to some precision.
206\end_layout
207
208\begin_layout Standard
209Discretization of the model (
210\begin_inset CommandInset ref
211LatexCommand ref
212reference "eq:simulator"
213
214\end_inset
215
216) was performed using Euler method with the following result:
217\begin_inset Formula \begin{align*}
218\isa{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}},\\
219\isb{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}},\\
220\om_{t+1} & =(1-\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\
221\vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*}
222
223\end_inset
224
225In this work, we consider parameters of the model known, we can make the
226 following substitutions to simplify notation,
227\begin_inset Formula $a=1-\frac{R_{s}}{L_{s}}\Dt$
228\end_inset
229
230,
231\begin_inset Formula $b=\frac{\Psi_{pm}}{L_{s}}\Dt$
232\end_inset
233
234,
235\begin_inset Formula $c=\frac{\Dt}{L_{s}}$
236\end_inset
237
238,
239\begin_inset Formula $d=1-\frac{B}{J}\Dt$
240\end_inset
241
242,
243\family roman
244\series medium
245\shape up
246\size normal
247\emph off
248\bar no
249\noun off
250\color none
251
252\begin_inset Formula $e=\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}$
253\end_inset
254
255, which results in a simplified model:
256\family default
257\series default
258\shape default
259\size default
260\emph default
261\bar default
262\noun default
263\color inherit
264 
265\begin_inset Formula \begin{align}
266\isa{,t+1} & =a\,\isa{,t}+b\omega_{t}\sin\vartheta_{t}+c\usa{,t},\nonumber \\
267\isb{,t+1} & =a\,\isb{,t}-b\omega_{t}\cos\vartheta_{t}+c\usb{,t},\label{eq:model-simple}\\
268\om_{t+1} & =d\om_{t}+e\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right),\nonumber \\
269\vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\nonumber \end{align}
270
271\end_inset
272
273
274\end_layout
275
276\begin_layout Standard
277The above equations can be aggregated into state
278\begin_inset Formula $x_{t}=[\isa{,t},\isb{,t},\om_{t},\th_{t}]$
279\end_inset
280
281 will be denoted as
282\begin_inset Formula $x_{t+1}=g(x_{t},u_{t})$
283\end_inset
284
285.
286\end_layout
287
288\begin_layout Subsection
289Transformation to d-q coordinates
290\end_layout
291
292\begin_layout Standard
293For many applications, it is advantageous to consider altervative coordinate
294 system denoted d-q as follows
295\begin_inset Formula \begin{eqnarray*}
296\left[\begin{array}{c}
297d\\
298q\end{array}\right] & = & \left[\begin{array}{cc}
299\cos\vartheta & \sin\vartheta\\
300-\sin\vartheta & \cos\vartheta\end{array}\right]\left[\begin{array}{c}
301\alpha\\
302\beta\end{array}\right]\\
303\left[\begin{array}{c}
304\alpha\\
305\beta\end{array}\right] & = & \left[\begin{array}{cc}
306\cos\vartheta & -\sin\vartheta\\
307\sin\vartheta & \cos\vartheta\end{array}\right]\left[\begin{array}{c}
308d\\
309q\end{array}\right]\end{eqnarray*}
310
311\end_inset
312
313Under this transformation, the whole model (
314\begin_inset CommandInset ref
315LatexCommand ref
316reference "eq:model"
317
318\end_inset
319
320) can be transformed into d-q coordinates.
321\end_layout
322
323\begin_layout Standard
324In this text, we will transform only one single quantity,
325\begin_inset Formula $L_{d}$
326\end_inset
327
328 and
329\begin_inset Formula $L_{q}$
330\end_inset
331
332 for which it holds
333\begin_inset Formula $L_{d}=kL_{q}$
334\end_inset
335
336.
337 Then,
338\begin_inset Formula \begin{eqnarray*}
339\left[\begin{array}{c}
340L_{\alpha}\\
341L_{\beta}\end{array}\right] & = & \left[\begin{array}{cc}
342\cos\vartheta & -\sin\vartheta\\
343\sin\vartheta & \cos\vartheta\end{array}\right]\left[\begin{array}{c}
344L_{d}\\
345L_{q}\end{array}\right].\\
346 & = & L_{d}\left[\begin{array}{cc}
347\cos\vartheta & -\sin\vartheta\\
348\sin\vartheta & \cos\vartheta\end{array}\right]\left[\begin{array}{c}
349k\\
3501\end{array}\right]\\
351 & = & L\left[\begin{array}{cc}
352k\cos\vartheta & -\sin\vartheta\\
353k\sin\vartheta & \cos\vartheta\end{array}\right]=L\left[\begin{array}{c}
354k_{c\vartheta}\\
355k_{s\vartheta}\end{array}\right].\end{eqnarray*}
356
357\end_inset
358
359Then, model of the drive is changed to
360\begin_inset Formula \begin{align*}
361\isa{,t+1} & =(1-\frac{R_{s}}{L_{s}k_{c\vartheta}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}k_{c\vartheta}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}k_{c\vartheta}},\\
362\isb{,t+1} & =(1-\frac{R_{s}}{L_{s}k_{s\vartheta}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}k_{s\vartheta}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}k_{s\vartheta}},\\
363\om_{t+1} & =(1-\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\
364\vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*}
365
366\end_inset
367
368Transformation to full d-q
369\begin_inset Formula \begin{eqnarray*}
370i_{d,t+1} & = & (1-\frac{R_{s}}{L_{d}}\Dt)i_{d,t}+\frac{L_{q}}{L_{d}}i_{q,t}\Dt\omega_{t}+u_{d,t}\frac{\Dt}{L_{d}},\\
371i_{q,t+1} & = & -\frac{L_{d}}{L_{q}}\Dt\omega_{t}i_{d,t}+(1-\frac{R_{s}}{L_{q}}\Dt)i_{q,t}-\frac{\Psi_{pm}}{L_{q}}\Dt\omega_{t}+u_{q,t}\frac{\Dt}{L_{q}},\\
372\omega_{t+1} & = & \underbrace{(1-\frac{B}{J}\Dt)}_{\approx1}\om_{t}+\Dt\frac{k_{p}p_{p}^{2}}{J}((L_{d}-L_{q})i_{d}+\Psi_{pm})i_{q}\\
373\vartheta_{t+1} & = & \vartheta_{t}+\Delta t\omega_{t}\end{eqnarray*}
374
375\end_inset
376
377
378\end_layout
379
380\begin_layout Standard
381Observation:
382\begin_inset Formula \[
383\left[\begin{array}{c}
384i_{\alpha}\\
385i_{\beta}\end{array}\right]=\left[\begin{array}{cc}
386\cos\vartheta & -\sin\vartheta\\
387\sin\vartheta & \cos\vartheta\end{array}\right]\left[\begin{array}{c}
388i_{d}\\
389i_{q}\end{array}\right]+e_{t}\]
390
391\end_inset
392
393
394\end_layout
395
396\begin_layout Subsection
397Gaussian model of disturbances
398\end_layout
399
400\begin_layout Standard
401This model is motivated by the well known Kalman filter, which is optimal
402 for linear system with Gaussian noise.
403 Hence, we model all disturbances to have covariance matrices
404\begin_inset Formula $Q_{t}$
405\end_inset
406
407 and
408\begin_inset Formula $R_{t}$
409\end_inset
410
411 for the state
412\begin_inset Formula $x_{t}$
413\end_inset
414
415 and observations
416\begin_inset Formula $y_{t}$
417\end_inset
418
419 respectively.
420\begin_inset Formula \begin{align}
421x_{t+1} & \sim\mathcal{N}(g(x_{t}),Q_{t})\label{eq:model}\\
422y_{t} & \sim\mathcal{N}([\isa{,t},\isb{,t}]',R_{t})\nonumber \end{align}
423
424\end_inset
425
426
427\end_layout
428
429\begin_layout Standard
430Under this assumptions, Bayesian estimation of the state,
431\begin_inset Formula $x_{t}$
432\end_inset
433
434, can be approximated by so called Extended Kalman filter which approximates
435 posterior density of the state by a Gaussian
436\begin_inset Formula \[
437f(x_{t}|y_{1}\ldots y_{t})=\mathcal{N}(\hat{x}_{t},S_{t}).\]
438
439\end_inset
440
441Its sufficient statistics
442\begin_inset Formula $S_{t}=\left[\hat{x}_{t},P_{t}\right]$
443\end_inset
444
445 is evaluated recursively as follows:
446\begin_inset Formula \begin{eqnarray}
447\hat{x}_{t} & = & g(\hat{x}_{t-1})-K\left(y_{t}-h(\hat{x}_{t-1})\right).\label{eq:ekf_mean}\\
448R_{y} & = & CP_{t-1}C'+R_{t},\nonumber \\
449K & = & P_{t-1}C'R_{y}^{-1},\nonumber \\
450S_{t} & = & P_{t-1}-P_{t-1}C'R_{y}^{-1}CP_{t-1},\\
451P_{t} & = & AS_{t}A'+Q_{t}.\label{eq:ekf_cov}\end{eqnarray}
452
453\end_inset
454
455where
456\begin_inset Formula $A=\frac{d}{dx_{t}}g(x_{t})$
457\end_inset
458
459,
460\begin_inset Formula $C=\frac{d}{dx_{t}}h(x_{t})$
461\end_inset
462
463,
464\begin_inset Formula $g(x_{t})$
465\end_inset
466
467 is model (
468\begin_inset CommandInset ref
469LatexCommand ref
470reference "eq:model-simple"
471
472\end_inset
473
474) and
475\begin_inset Formula $h(x_{t})$
476\end_inset
477
478 direct observation of
479\begin_inset Formula $y_{t}=[\isa{,t},\isb{,t}]$
480\end_inset
481
482, i.e.
483\begin_inset Formula \[
484A=\left[\begin{array}{cccc}
485a & 0 & b\sin\th & b\om\cos\th\\
4860 & a & -b\cos\th & b\om\sin\th\\
487-e\sin\th & e\cos\th & d & -e(\isb{}\sin\th+\isa{}\cos\th)\\
4880 & 0 & \Dt & 1\end{array}\right],\quad C=\left[\begin{array}{cccc}
4891 & 0 & 0 & 0\\
4900 & 1 & 0 & 0\end{array}\right]\]
491
492\end_inset
493
494
495\end_layout
496
497\begin_layout Standard
498\begin_inset Formula \[
499B=\left[\begin{array}{cc}
500c & 0\\
5010 & c\\
5020 & 0\\
5030 & 0\end{array}\right]\]
504
505\end_inset
506
507
508\end_layout
509
510\begin_layout Standard
511Covariance matrices of the system
512\begin_inset Formula $Q$
513\end_inset
514
515 and
516\begin_inset Formula $R$
517\end_inset
518
519 are supposed to be known.
520\end_layout
521
522\begin_layout Subsection
523Test system
524\end_layout
525
526\begin_layout Standard
527A real PMSM system on which the algorithms will be tested has parameters:
528\end_layout
529
530\begin_layout Standard
531\begin_inset Formula \begin{eqnarray*}
532R_{s} & = & 0.28;\\
533L_{s} & = & 0.003465;\\
534\Psi_{pm} & = & 0.1989;\\
535k_{p} & = & 1.5\\
536p & = & 4.0;\\
537J & = & 0.04;\\
538\Delta t & = & 0.000125\end{eqnarray*}
539
540\end_inset
541
542which yields
543\begin_inset Formula \begin{eqnarray*}
544a & = & 0.9898\\
545b & = & 0.0072\\
546c & = & 0.0361\\
547d & = & 1\\
548e & = & 0.0149\end{eqnarray*}
549
550\end_inset
551
552The covaraince matrices
553\begin_inset Formula $Q$
554\end_inset
555
556 and
557\begin_inset Formula $R$
558\end_inset
559
560 are assumed to be known.
561 For the initial tests, we can use the following values:
562\end_layout
563
564\begin_layout Standard
565\begin_inset Formula \begin{eqnarray*}
566Q & = & \mathrm{diag}(0.0013,0.0013,5e-6,1e-10),\\
567R & = & \mathrm{diag}(0.0006,0.0006).\end{eqnarray*}
568
569\end_inset
570
571
572\end_layout
573
574\begin_layout Standard
575Limits:
576\begin_inset Formula \begin{align*}
577u_{\alpha,max} & =50V, & u_{\alpha,min} & =-50V,\\
578u_{\beta,max} & =50V. & u_{\beta,min} & =-50V,\end{align*}
579
580\end_inset
581
582
583\end_layout
584
585\begin_layout Standard
586Perhaps better:
587\begin_inset Formula \[
588u_{\alpha}^{2}+u_{\beta}^{2}<100^{2}.\]
589
590\end_inset
591
592
593\end_layout
594
595\begin_layout Standard
596
597\end_layout
598
599\begin_layout Section
600Control
601\end_layout
602
603\begin_layout Standard
604The task is to reach predefined speed
605\begin_inset Formula $\overline{\omega}_{t}$
606\end_inset
607
608.
609\end_layout
610
611\begin_layout Standard
612For simplicity, we will assume additive loss function:
613\begin_inset Formula \begin{eqnarray*}
614l(x_{t},u_{t}) & = & (\omega_{t}-\overline{\omega}_{t})^{2}+q(\usa{,t}^{2}+\usb{,t}^{2}).\\
615 & = & (\omega_{t}-\overline{\omega}_{t})\Xi(\omega_{t}-\overline{\omega}_{t})+[\usa t,\usb t]\underbrace{\left[\begin{array}{cc}
616\upsilon & 0\\
6170 & \upsilon\end{array}\right]}_{\Upsilon}\left[\begin{array}{c}
618\usa t\\
619\usb t\end{array}\right]\end{eqnarray*}
620
621\end_inset
622
623Here,
624\begin_inset Formula $\Upsilon$
625\end_inset
626
627 is the chosen penalization of the inputs, which remains to be tuned.
628\end_layout
629
630\begin_layout Standard
631
632\series bold
633Note
634\series default
635: classical notation of penalization matrices is
636\begin_inset Formula $Q$
637\end_inset
638
639 and
640\begin_inset Formula $R$
641\end_inset
642
643, but it conflicts wit
644\begin_inset Formula $Q$
645\end_inset
646
647 and
648\begin_inset Formula $R$
649\end_inset
650
651 in (
652\begin_inset CommandInset ref
653LatexCommand ref
654reference "eq:model"
655
656\end_inset
657
658).
659\end_layout
660
661\begin_layout Standard
662Following the standard dynamic programming approach, optimization of the
663 loss function can be done recursively, as follows:
664\begin_inset Formula \[
665V(x_{t-1},u_{t-1})=\arg\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(x_{t},u_{t})\right\} ,\]
666
667\end_inset
668
669where
670\begin_inset Formula $V(x_{t},u_{t})$
671\end_inset
672
673 is the Bellman function.
674 Since the model evolution is stochastic, we can reformulate it in terms
675 of sufficient statistics,
676\begin_inset Formula $S$
677\end_inset
678
679 as follows:
680\begin_inset Formula \[
681V(S_{t-1})=\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(S_{t})\right\} .\]
682
683\end_inset
684
685
686\end_layout
687
688\begin_layout Standard
689Representation of the Bellman function depends on chosen approximation.
690\end_layout
691
692\begin_layout Subsection
693LQG control
694\end_layout
695
696\begin_layout Standard
697Control of linear state-space model with Gaussian noise
698\begin_inset Formula \begin{eqnarray*}
699x_{t} & = & Ax_{t-1}+Bu_{t}+Q^{\frac{1}{2}}v_{t},\\
700y_{t} & = & Cx_{t}+Du_{t}+R^{\frac{1}{2}}w_{t}.\end{eqnarray*}
701
702\end_inset
703
704to minimize loss function
705\begin_inset Formula \[
706L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+u_{t}'\Upsilon u_{t}.\]
707
708\end_inset
709
710
711\end_layout
712
713\begin_layout Standard
714Optimal solution in the sense of dynamic programming on horizon
715\begin_inset Formula $t+h$
716\end_inset
717
718 is:
719\begin_inset Newline newline
720\end_inset
721
722
723\begin_inset Formula \begin{eqnarray*}
724u_{t} & = & L_{t}\left(\hat{x}_{t}-\overline{x}_{t}\right),\\
725L_{t} & = & -(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1}A,\\
726S_{t} & = & A'(S_{t+1}-S_{t+1}B(B'S_{t+1}B+\Upsilon)^{-1}B'S_{t+1})A+\Xi,\end{eqnarray*}
727
728\end_inset
729
730This solution is certainty equivalent, i.e.
731 only the first moment,
732\begin_inset Formula $\hat{x}$
733\end_inset
734
735, of the Kalman filter is used.
736\end_layout
737
738\begin_layout Subsection
739PI control
740\end_layout
741
742\begin_layout Standard
743The classical control is based on transformation to
744\begin_inset Formula $dq$
745\end_inset
746
747 reference frame:
748\begin_inset Formula \begin{eqnarray*}
749i_{d} & = & i_{\alpha}\cos(\vartheta)+i_{\beta}\sin(\vartheta),\\
750i_{q} & = & i_{\beta}\cos(\vartheta)-i_{\alpha}\sin(\vartheta).\end{eqnarray*}
751
752\end_inset
753
754Desired
755\begin_inset Formula $i_{q}$
756\end_inset
757
758 current,
759\begin_inset Formula $\overline{i}_{q}$
760\end_inset
761
762, is derived using PI controller
763\begin_inset Formula \[
764\overline{i}_{q}=PI(\overline{\omega}-\omega,P_{i},I_{i}).\]
765
766\end_inset
767
768This current needs to be achieved through voltages
769\begin_inset Formula $u_{d},u_{q}$
770\end_inset
771
772 which are again obtained from a PI controller
773\begin_inset Formula \begin{eqnarray*}
774u_{d} & = & PI(-i_{d},P_{u},I_{u}),\\
775u_{q} & = & PI(\overline{i}_{q}-i_{q},P_{u},I_{u}).\end{eqnarray*}
776
777\end_inset
778
779These are compensated (for some reason) as follows:
780\begin_inset Formula \begin{eqnarray*}
781u_{d} & = & u_{d}-L_{S}\omega\overline{i}_{q},\\
782u_{q} & = & u_{q}+\Psi_{pm}\omega.\end{eqnarray*}
783
784\end_inset
785
786Conversion to
787\begin_inset Formula $u_{\alpha},u_{\beta}$
788\end_inset
789
790 is
791\begin_inset Formula \begin{align*}
792u_{\alpha} & =|U|\cos(\phi), & u_{\beta} & =|U|\sin(\phi)\\
793|U| & =\sqrt{u_{d}^{2}+u_{q}^{2}}, & \phi & =\begin{cases}
794\arctan(\frac{u_{q}}{u_{d}})+\vartheta & u_{d}\ge0\\
795\arctan(\frac{u_{q}}{u_{d}})+\pi+\vartheta & u_{d}<0\end{cases}\end{align*}
796
797\end_inset
798
799
800\end_layout
801
802\begin_layout Standard
803PI controller is defined as follows:
804\begin_inset Formula \begin{eqnarray*}
805x & = & PI(\epsilon,P,I)\\
806 & = & P\epsilon+I(S_{t-1}+\epsilon)\\
807S_{t} & = & S_{t-1}+\epsilon\end{eqnarray*}
808
809\end_inset
810
811Constants for the system:
812\begin_inset Formula \[
813P_{i}=3,\,\, I_{i}=0.00375,\,\, P_{u}=20,\,\, I_{u}=0.5.\]
814
815\end_inset
816
817The requested values for
818\begin_inset Formula $\omega$
819\end_inset
820
821 should be kept in interval
822\begin_inset Formula $<-30,30>$
823\end_inset
824
825.
826\end_layout
827
828\begin_layout Subsection
829Cautious LQG control
830\end_layout
831
832\begin_layout Standard
833Uncertainty in
834\begin_inset Formula $A$
835\end_inset
836
837.
838\end_layout
839
840\begin_layout Standard
841Sigma points:
842\begin_inset Formula $x^{(i)}=\hat{x}+hv_{i}$
843\end_inset
844
845,
846\begin_inset Formula $v_{i}$
847\end_inset
848
849 are eigenvectors of
850\begin_inset Formula $P$
851\end_inset
852
853.
854\end_layout
855
856\begin_layout Standard
857\begin_inset Formula \begin{eqnarray*}
858E\{x'A(x)QA(x)x\} & = & \frac{1}{n}\sum x'A(x^{(i)})QA^{(i)}(x)x\\
859 & = & x'Zx'\end{eqnarray*}
860
861\end_inset
862
863
864\end_layout
865
866\begin_layout Standard
867Uncented transform...
868\end_layout
869
870\begin_layout Subsection
871Poor-man's dual LQG control
872\end_layout
873
874\begin_layout Standard
875Various heuristic solutions to dual extension of LQG has been proposed.
876 Most of them is based on approximation of the loss function
877\begin_inset Formula \[
878L_{t}=(x_{t}-\overline{x}_{t})'\Xi(x_{t}-\overline{x}_{t})+(u_{t}-\overline{u}_{t})'\Upsilon(u_{t}-\overline{u}_{t})+DUAL\_TERM.\]
879
880\end_inset
881
882where DUAL_TERM is typically a function of
883\begin_inset Formula $P_{t+2}$
884\end_inset
885
886.
887 
888\end_layout
889
890\begin_layout Standard
891To be continued...
892\end_layout
893
894\begin_layout Subsection
895Test Scenarios
896\end_layout
897
898\begin_layout Standard
899With almost full information, design of the control strategy should be almost
900 trivial:
901\begin_inset Formula \begin{eqnarray*}
902\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
903P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,0.01]).\end{eqnarray*}
904
905\end_inset
906
907
908\end_layout
909
910\begin_layout Standard
911The difficulty arise with growing initial covariance matrix:
912\begin_inset Formula \begin{eqnarray*}
913\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
914P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,1]).\end{eqnarray*}
915
916\end_inset
917
918
919\end_layout
920
921\begin_layout Standard
922Or even worse:
923\begin_inset Formula \begin{eqnarray*}
924\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
925P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,10]).\end{eqnarray*}
926
927\end_inset
928
929==\SpecialChar \-
930=
931\end_layout
932
933\begin_layout Standard
934The requested value
935\begin_inset Formula $\overline{\omega}_{t}=1.0015.$
936\end_inset
937
938
939\end_layout
940
941\begin_layout Conjecture
942It is sufficient to consider hyper-state
943\begin_inset Formula $H=[\hat{i}_{\alpha},\hat{i}_{\beta},\hat{\omega},\hat{\vartheta},P(3,3),P(4,4)]$
944\end_inset
945
946.
947\end_layout
948
949\begin_layout Conjecture
950\begin_inset CommandInset bibtex
951LatexCommand bibtex
952bibfiles "bibtex/vs,bibtex/vs-world,bibtex/world_classics,bibtex/world,new_bib_PS"
953options "plain"
954
955\end_inset
956
957
958\end_layout
959
960\end_body
961\end_document
Note: See TracBrowser for help on using the browser.