| 1 | #LyX 1.6.4 created this file. For more info see http://www.lyx.org/ |
|---|
| 2 | \lyxformat 345 |
|---|
| 3 | \begin_document |
|---|
| 4 | \begin_header |
|---|
| 5 | \textclass scrartcl |
|---|
| 6 | \begin_preamble |
|---|
| 7 | \newcommand\blabl{} |
|---|
| 8 | \end_preamble |
|---|
| 9 | \use_default_options false |
|---|
| 10 | \begin_modules |
|---|
| 11 | theorems-ams |
|---|
| 12 | theorems-ams-extended |
|---|
| 13 | \end_modules |
|---|
| 14 | \language english |
|---|
| 15 | \inputencoding auto |
|---|
| 16 | \font_roman lmodern |
|---|
| 17 | \font_sans default |
|---|
| 18 | \font_typewriter default |
|---|
| 19 | \font_default_family default |
|---|
| 20 | \font_sc false |
|---|
| 21 | \font_osf false |
|---|
| 22 | \font_sf_scale 100 |
|---|
| 23 | \font_tt_scale 100 |
|---|
| 24 | |
|---|
| 25 | \graphics default |
|---|
| 26 | \paperfontsize default |
|---|
| 27 | \spacing single |
|---|
| 28 | \use_hyperref true |
|---|
| 29 | \pdf_bookmarks true |
|---|
| 30 | \pdf_bookmarksnumbered false |
|---|
| 31 | \pdf_bookmarksopen false |
|---|
| 32 | \pdf_bookmarksopenlevel 1 |
|---|
| 33 | \pdf_breaklinks false |
|---|
| 34 | \pdf_pdfborder false |
|---|
| 35 | \pdf_colorlinks false |
|---|
| 36 | \pdf_backref false |
|---|
| 37 | \pdf_pdfusetitle true |
|---|
| 38 | \papersize default |
|---|
| 39 | \use_geometry false |
|---|
| 40 | \use_amsmath 1 |
|---|
| 41 | \use_esint 0 |
|---|
| 42 | \cite_engine basic |
|---|
| 43 | \use_bibtopic false |
|---|
| 44 | \paperorientation portrait |
|---|
| 45 | \secnumdepth 3 |
|---|
| 46 | \tocdepth 3 |
|---|
| 47 | \paragraph_separation indent |
|---|
| 48 | \defskip medskip |
|---|
| 49 | \quotes_language english |
|---|
| 50 | \papercolumns 1 |
|---|
| 51 | \papersides 1 |
|---|
| 52 | \paperpagestyle default |
|---|
| 53 | \tracking_changes false |
|---|
| 54 | \output_changes false |
|---|
| 55 | \author "" |
|---|
| 56 | \author "" |
|---|
| 57 | \end_header |
|---|
| 58 | |
|---|
| 59 | \begin_body |
|---|
| 60 | |
|---|
| 61 | \begin_layout Standard |
|---|
| 62 | \begin_inset FormulaMacro |
|---|
| 63 | \newcommand{\isa}[1]{i_{\alpha#1}} |
|---|
| 64 | {i_{\alpha#1}} |
|---|
| 65 | \end_inset |
|---|
| 66 | |
|---|
| 67 | |
|---|
| 68 | \begin_inset FormulaMacro |
|---|
| 69 | \newcommand{\isb}[1]{i_{\beta#1}} |
|---|
| 70 | {i_{\beta#1}} |
|---|
| 71 | \end_inset |
|---|
| 72 | |
|---|
| 73 | |
|---|
| 74 | \begin_inset FormulaMacro |
|---|
| 75 | \newcommand{\Dt}{\Delta t} |
|---|
| 76 | {\Delta t} |
|---|
| 77 | \end_inset |
|---|
| 78 | |
|---|
| 79 | |
|---|
| 80 | \begin_inset FormulaMacro |
|---|
| 81 | \newcommand{\om}{\omega} |
|---|
| 82 | {\omega} |
|---|
| 83 | \end_inset |
|---|
| 84 | |
|---|
| 85 | |
|---|
| 86 | \begin_inset FormulaMacro |
|---|
| 87 | \newcommand{\th}{\vartheta} |
|---|
| 88 | {\vartheta} |
|---|
| 89 | \end_inset |
|---|
| 90 | |
|---|
| 91 | |
|---|
| 92 | \begin_inset FormulaMacro |
|---|
| 93 | \newcommand{\usa}[1]{u_{\alpha#1}} |
|---|
| 94 | {u_{\alpha#1}} |
|---|
| 95 | \end_inset |
|---|
| 96 | |
|---|
| 97 | |
|---|
| 98 | \begin_inset FormulaMacro |
|---|
| 99 | \newcommand{\usb}[1]{u_{\beta#1}} |
|---|
| 100 | {u_{\beta#1}} |
|---|
| 101 | \end_inset |
|---|
| 102 | |
|---|
| 103 | |
|---|
| 104 | \end_layout |
|---|
| 105 | |
|---|
| 106 | \begin_layout Title |
|---|
| 107 | PMSM system description |
|---|
| 108 | \end_layout |
|---|
| 109 | |
|---|
| 110 | \begin_layout Section |
|---|
| 111 | Model of PMSM Drive |
|---|
| 112 | \end_layout |
|---|
| 113 | |
|---|
| 114 | \begin_layout Standard |
|---|
| 115 | Permanent magnet synchronous machine (PMSM) drive with surface magnets on |
|---|
| 116 | the rotor is described by conventional equations of PMSM in the stationary |
|---|
| 117 | reference frame: |
|---|
| 118 | \begin_inset Formula \begin{align} |
|---|
| 119 | \frac{d\isa{}}{dt} & =-\frac{R_{s}}{L_{s}}\isa{}+\frac{\Psi_{PM}}{L_{s}}\omega_{me}\sin\th+\frac{\usa{}}{L_{s}},\nonumber \\ |
|---|
| 120 | \frac{d\isb{}}{dt} & =-\frac{R_{s}}{L_{s}}\isb{}-\frac{\Psi_{PM}}{L_{s}}\omega_{me}\cos\th+\frac{\usb{}}{L_{s}},\label{eq:simulator}\\ |
|---|
| 121 | \frac{d\om}{dt} & =\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{}\cos(\th)-\isa{}\sin(\th)\right)-\frac{B}{J}\om-\frac{p_{p}}{J}T_{L},\nonumber \\ |
|---|
| 122 | \frac{d\th}{dt} & =\omega_{me}.\nonumber \end{align} |
|---|
| 123 | |
|---|
| 124 | \end_inset |
|---|
| 125 | |
|---|
| 126 | Here, |
|---|
| 127 | \begin_inset Formula $\isa{}$ |
|---|
| 128 | \end_inset |
|---|
| 129 | |
|---|
| 130 | , |
|---|
| 131 | \begin_inset Formula $\isb{}$ |
|---|
| 132 | \end_inset |
|---|
| 133 | |
|---|
| 134 | , |
|---|
| 135 | \begin_inset Formula $\usa{}$ |
|---|
| 136 | \end_inset |
|---|
| 137 | |
|---|
| 138 | and |
|---|
| 139 | \begin_inset Formula $\usb{}$ |
|---|
| 140 | \end_inset |
|---|
| 141 | |
|---|
| 142 | represent stator current and voltage in the stationary reference frame, |
|---|
| 143 | respectively; |
|---|
| 144 | \begin_inset Formula $\om$ |
|---|
| 145 | \end_inset |
|---|
| 146 | |
|---|
| 147 | is electrical rotor speed and |
|---|
| 148 | \begin_inset Formula $\th$ |
|---|
| 149 | \end_inset |
|---|
| 150 | |
|---|
| 151 | is electrical rotor position. |
|---|
| 152 | |
|---|
| 153 | \begin_inset Formula $R_{s}$ |
|---|
| 154 | \end_inset |
|---|
| 155 | |
|---|
| 156 | and |
|---|
| 157 | \begin_inset Formula $L_{s}$ |
|---|
| 158 | \end_inset |
|---|
| 159 | |
|---|
| 160 | is stator resistance and inductance respectively, |
|---|
| 161 | \begin_inset Formula $\Psi_{pm}$ |
|---|
| 162 | \end_inset |
|---|
| 163 | |
|---|
| 164 | is the flux of permanent magnets on the rotor, |
|---|
| 165 | \begin_inset Formula $B$ |
|---|
| 166 | \end_inset |
|---|
| 167 | |
|---|
| 168 | is friction and |
|---|
| 169 | \begin_inset Formula $T_{L}$ |
|---|
| 170 | \end_inset |
|---|
| 171 | |
|---|
| 172 | is load torque, |
|---|
| 173 | \begin_inset Formula $J$ |
|---|
| 174 | \end_inset |
|---|
| 175 | |
|---|
| 176 | is moment of inertia, |
|---|
| 177 | \begin_inset Formula $p_{p}$ |
|---|
| 178 | \end_inset |
|---|
| 179 | |
|---|
| 180 | is the number of pole pairs, |
|---|
| 181 | \begin_inset Formula $k_{p}$ |
|---|
| 182 | \end_inset |
|---|
| 183 | |
|---|
| 184 | is the Park constant. |
|---|
| 185 | \end_layout |
|---|
| 186 | |
|---|
| 187 | \begin_layout Standard |
|---|
| 188 | The sensor-less control scenario arise when sensors of the speed and position |
|---|
| 189 | ( |
|---|
| 190 | \begin_inset Formula $\om$ |
|---|
| 191 | \end_inset |
|---|
| 192 | |
|---|
| 193 | and |
|---|
| 194 | \begin_inset Formula $\th$ |
|---|
| 195 | \end_inset |
|---|
| 196 | |
|---|
| 197 | ) are missing (from various reasons). |
|---|
| 198 | Then, the only observed variables are: |
|---|
| 199 | \begin_inset Formula \begin{equation} |
|---|
| 200 | y_{t}=\left[\begin{array}{c} |
|---|
| 201 | \isa{}(t),\isb{}(t),\usa{}(t),\usb{}(t)\end{array}\right].\label{eq:obs}\end{equation} |
|---|
| 202 | |
|---|
| 203 | \end_inset |
|---|
| 204 | |
|---|
| 205 | Which are, however, observed only up to some precision. |
|---|
| 206 | \end_layout |
|---|
| 207 | |
|---|
| 208 | \begin_layout Standard |
|---|
| 209 | Discretization of the model ( |
|---|
| 210 | \begin_inset CommandInset ref |
|---|
| 211 | LatexCommand ref |
|---|
| 212 | reference "eq:simulator" |
|---|
| 213 | |
|---|
| 214 | \end_inset |
|---|
| 215 | |
|---|
| 216 | ) was performed using Euler method with the following result: |
|---|
| 217 | \begin_inset Formula \begin{align*} |
|---|
| 218 | \isa{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}},\\ |
|---|
| 219 | \isb{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}},\\ |
|---|
| 220 | \om_{t+1} & =(1--\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\ |
|---|
| 221 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*} |
|---|
| 222 | |
|---|
| 223 | \end_inset |
|---|
| 224 | |
|---|
| 225 | In this work, we consider parameters of the model known, we can make the |
|---|
| 226 | following substitutions to simplify notation, |
|---|
| 227 | \begin_inset Formula $a=1-\frac{R_{s}}{L_{s}}\Dt$ |
|---|
| 228 | \end_inset |
|---|
| 229 | |
|---|
| 230 | , |
|---|
| 231 | \begin_inset Formula $b=\frac{\Psi_{pm}}{L_{s}}\Dt$ |
|---|
| 232 | \end_inset |
|---|
| 233 | |
|---|
| 234 | , |
|---|
| 235 | \begin_inset Formula $c=\frac{\Dt}{L_{s}}$ |
|---|
| 236 | \end_inset |
|---|
| 237 | |
|---|
| 238 | , |
|---|
| 239 | \begin_inset Formula $d=1-\frac{B}{J}\Dt$ |
|---|
| 240 | \end_inset |
|---|
| 241 | |
|---|
| 242 | , |
|---|
| 243 | \family roman |
|---|
| 244 | \series medium |
|---|
| 245 | \shape up |
|---|
| 246 | \size normal |
|---|
| 247 | \emph off |
|---|
| 248 | \bar no |
|---|
| 249 | \noun off |
|---|
| 250 | \color none |
|---|
| 251 | |
|---|
| 252 | \begin_inset Formula $e=\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}$ |
|---|
| 253 | \end_inset |
|---|
| 254 | |
|---|
| 255 | , which results in a simplified model: |
|---|
| 256 | \family default |
|---|
| 257 | \series default |
|---|
| 258 | \shape default |
|---|
| 259 | \size default |
|---|
| 260 | \emph default |
|---|
| 261 | \bar default |
|---|
| 262 | \noun default |
|---|
| 263 | \color inherit |
|---|
| 264 | |
|---|
| 265 | \begin_inset Formula \begin{align} |
|---|
| 266 | \isa{,t+1} & =a\,\isa{,t}+b\omega_{t}\sin\vartheta_{t}+c\usa{,t},\nonumber \\ |
|---|
| 267 | \isb{,t+1} & =a\,\isb{,t}-b\omega_{t}\cos\vartheta_{t}+c\usb{,t},\label{eq:model-simple}\\ |
|---|
| 268 | \om_{t+1} & =d\om_{t}+e\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right),\nonumber \\ |
|---|
| 269 | \vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\nonumber \end{align} |
|---|
| 270 | |
|---|
| 271 | \end_inset |
|---|
| 272 | |
|---|
| 273 | |
|---|
| 274 | \end_layout |
|---|
| 275 | |
|---|
| 276 | \begin_layout Standard |
|---|
| 277 | The above equations can be aggregated into state |
|---|
| 278 | \begin_inset Formula $x_{t}=[\isa{,t},\isb{,t},\om_{t},\th_{t}]$ |
|---|
| 279 | \end_inset |
|---|
| 280 | |
|---|
| 281 | will be denoted as |
|---|
| 282 | \begin_inset Formula $x_{t+1}=g(x_{t},u_{t})$ |
|---|
| 283 | \end_inset |
|---|
| 284 | |
|---|
| 285 | . |
|---|
| 286 | \end_layout |
|---|
| 287 | |
|---|
| 288 | \begin_layout Subsection |
|---|
| 289 | Gaussian model of disturbances |
|---|
| 290 | \end_layout |
|---|
| 291 | |
|---|
| 292 | \begin_layout Standard |
|---|
| 293 | This model is motivated by the well known Kalman filter, which is optimal |
|---|
| 294 | for linear system with Gaussian noise. |
|---|
| 295 | Hence, we model all disturbances to have covariance matrices |
|---|
| 296 | \begin_inset Formula $Q_{t}$ |
|---|
| 297 | \end_inset |
|---|
| 298 | |
|---|
| 299 | and |
|---|
| 300 | \begin_inset Formula $R_{t}$ |
|---|
| 301 | \end_inset |
|---|
| 302 | |
|---|
| 303 | for the state |
|---|
| 304 | \begin_inset Formula $x_{t}$ |
|---|
| 305 | \end_inset |
|---|
| 306 | |
|---|
| 307 | and observations |
|---|
| 308 | \begin_inset Formula $y_{t}$ |
|---|
| 309 | \end_inset |
|---|
| 310 | |
|---|
| 311 | respectively. |
|---|
| 312 | \begin_inset Formula \begin{align*} |
|---|
| 313 | x_{t+1} & \sim\mathcal{N}(g(x_{t}),Q_{t})\\ |
|---|
| 314 | y_{t} & \sim\mathcal{N}([\isa{,t},\isb{,t}]',R_{t})\end{align*} |
|---|
| 315 | |
|---|
| 316 | \end_inset |
|---|
| 317 | |
|---|
| 318 | |
|---|
| 319 | \end_layout |
|---|
| 320 | |
|---|
| 321 | \begin_layout Standard |
|---|
| 322 | Under this assumptions, Bayesian estimation of the state, |
|---|
| 323 | \begin_inset Formula $x_{t}$ |
|---|
| 324 | \end_inset |
|---|
| 325 | |
|---|
| 326 | , can be approximated by so called Extended Kalman filter which approximates |
|---|
| 327 | posterior density of the state by a Gaussian |
|---|
| 328 | \begin_inset Formula \[ |
|---|
| 329 | f(x_{t}|y_{1}\ldots y_{t})=\mathcal{N}(\hat{x}_{t},P_{t}).\] |
|---|
| 330 | |
|---|
| 331 | \end_inset |
|---|
| 332 | |
|---|
| 333 | Its sufficient statistics |
|---|
| 334 | \begin_inset Formula $S_{t}=\left[\hat{x}_{t},P_{t}\right]$ |
|---|
| 335 | \end_inset |
|---|
| 336 | |
|---|
| 337 | is evaluated recursively as follows: |
|---|
| 338 | \begin_inset Formula \begin{eqnarray} |
|---|
| 339 | \hat{x}_{t} & = & g(\hat{x}_{t-1})-K\left(y_{t}-h(\hat{x}_{t-1})\right).\label{eq:ekf_mean}\\ |
|---|
| 340 | R_{y} & = & C'P_{t-1}C+R_{t},\nonumber \\ |
|---|
| 341 | K & = & P_{t-1}CR_{y}^{-1}(y_{t}-h(\hat{x}_{t-1})),\nonumber \\ |
|---|
| 342 | P_{t} & = & A\left(P_{t-1}-P_{t-1}C'R_{y}^{-1}CP_{t-1}\right)A+Q_{t}.\label{eq:ekf_cov}\end{eqnarray} |
|---|
| 343 | |
|---|
| 344 | \end_inset |
|---|
| 345 | |
|---|
| 346 | where |
|---|
| 347 | \begin_inset Formula $A=\frac{d}{dx_{t}}g(x_{t})$ |
|---|
| 348 | \end_inset |
|---|
| 349 | |
|---|
| 350 | , |
|---|
| 351 | \begin_inset Formula $C=\frac{d}{dx_{t}}h(x_{t})$ |
|---|
| 352 | \end_inset |
|---|
| 353 | |
|---|
| 354 | , |
|---|
| 355 | \begin_inset Formula $g(x_{t})$ |
|---|
| 356 | \end_inset |
|---|
| 357 | |
|---|
| 358 | is model ( |
|---|
| 359 | \begin_inset CommandInset ref |
|---|
| 360 | LatexCommand ref |
|---|
| 361 | reference "eq:model-simple" |
|---|
| 362 | |
|---|
| 363 | \end_inset |
|---|
| 364 | |
|---|
| 365 | ) and |
|---|
| 366 | \begin_inset Formula $h(x_{t})$ |
|---|
| 367 | \end_inset |
|---|
| 368 | |
|---|
| 369 | direct observation of |
|---|
| 370 | \begin_inset Formula $y_{t}=[\isa{,t},\isb{,t}]$ |
|---|
| 371 | \end_inset |
|---|
| 372 | |
|---|
| 373 | , i.e. |
|---|
| 374 | \begin_inset Formula \[ |
|---|
| 375 | A=\left[\begin{array}{cccc} |
|---|
| 376 | a & 0 & b\sin\th & b\om\cos\th\\ |
|---|
| 377 | 0 & a & -b\cos\th & b\om\sin\th\\ |
|---|
| 378 | -e\sin\th & e\cos\th & d & -e(\isb{}\sin\th+\isa{}\cos\th)\\ |
|---|
| 379 | 0 & 0 & \Dt & 1\end{array}\right],\quad C=\left[\begin{array}{cccc} |
|---|
| 380 | 1\\ |
|---|
| 381 | & 1\\ |
|---|
| 382 | & & 0\\ |
|---|
| 383 | & & & 0\end{array}\right]\] |
|---|
| 384 | |
|---|
| 385 | \end_inset |
|---|
| 386 | |
|---|
| 387 | |
|---|
| 388 | \end_layout |
|---|
| 389 | |
|---|
| 390 | \begin_layout Standard |
|---|
| 391 | Covariance matrices of the system |
|---|
| 392 | \begin_inset Formula $Q$ |
|---|
| 393 | \end_inset |
|---|
| 394 | |
|---|
| 395 | and |
|---|
| 396 | \begin_inset Formula $R$ |
|---|
| 397 | \end_inset |
|---|
| 398 | |
|---|
| 399 | are supposed to be known. |
|---|
| 400 | \end_layout |
|---|
| 401 | |
|---|
| 402 | \begin_layout Section |
|---|
| 403 | Control |
|---|
| 404 | \end_layout |
|---|
| 405 | |
|---|
| 406 | \begin_layout Standard |
|---|
| 407 | The task is to reach predefined speed |
|---|
| 408 | \begin_inset Formula $\overline{\omega}_{t}$ |
|---|
| 409 | \end_inset |
|---|
| 410 | |
|---|
| 411 | . |
|---|
| 412 | \end_layout |
|---|
| 413 | |
|---|
| 414 | \begin_layout Standard |
|---|
| 415 | For simplicity, we will assume additive loss function: |
|---|
| 416 | \begin_inset Formula \[ |
|---|
| 417 | l(x_{t},u_{t})=(\omega_{t}-\overline{\omega}_{t})^{2}+\psi(\usa{,t}^{2}+\usb{,t}^{2}).\] |
|---|
| 418 | |
|---|
| 419 | \end_inset |
|---|
| 420 | |
|---|
| 421 | Here, |
|---|
| 422 | \begin_inset Formula $\psi$ |
|---|
| 423 | \end_inset |
|---|
| 424 | |
|---|
| 425 | is the chosen penalization of the inputs. |
|---|
| 426 | |
|---|
| 427 | \end_layout |
|---|
| 428 | |
|---|
| 429 | \begin_layout Standard |
|---|
| 430 | Following the standard dynamic programming approach, optimization of the |
|---|
| 431 | loss function can be done recursively, as follows: |
|---|
| 432 | \begin_inset Formula \[ |
|---|
| 433 | V(x_{t-1},u_{t-1})=\arg\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(x_{t},u_{t})\right\} ,\] |
|---|
| 434 | |
|---|
| 435 | \end_inset |
|---|
| 436 | |
|---|
| 437 | where |
|---|
| 438 | \begin_inset Formula $V(x_{t},u_{t})$ |
|---|
| 439 | \end_inset |
|---|
| 440 | |
|---|
| 441 | is the Bellman function. |
|---|
| 442 | Since the model evolution is stochastic, we can reformulate it in terms |
|---|
| 443 | of sufficient statistics, |
|---|
| 444 | \begin_inset Formula $S$ |
|---|
| 445 | \end_inset |
|---|
| 446 | |
|---|
| 447 | as follows: |
|---|
| 448 | \begin_inset Formula \[ |
|---|
| 449 | V(S_{t-1})=\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(S_{t})\right\} .\] |
|---|
| 450 | |
|---|
| 451 | \end_inset |
|---|
| 452 | |
|---|
| 453 | |
|---|
| 454 | \end_layout |
|---|
| 455 | |
|---|
| 456 | \begin_layout Standard |
|---|
| 457 | Representation of the Bellman function depends on chosen approximation. |
|---|
| 458 | \end_layout |
|---|
| 459 | |
|---|
| 460 | \begin_layout Standard |
|---|
| 461 | \begin_inset CommandInset bibtex |
|---|
| 462 | LatexCommand bibtex |
|---|
| 463 | bibfiles "bibtex/vs,bibtex/vs-world,bibtex/world_classics,bibtex/world,new_bib_PS" |
|---|
| 464 | options "plain" |
|---|
| 465 | |
|---|
| 466 | \end_inset |
|---|
| 467 | |
|---|
| 468 | |
|---|
| 469 | \end_layout |
|---|
| 470 | |
|---|
| 471 | \end_body |
|---|
| 472 | \end_document |
|---|