root/applications/dual/texts/pmsm_system.lyx @ 869

Revision 848, 12.3 kB (checked in by smidl, 15 years ago)

oprava Kalmana

Line 
1#LyX 1.6.4 created this file. For more info see http://www.lyx.org/
2\lyxformat 345
3\begin_document
4\begin_header
5\textclass scrartcl
6\begin_preamble
7\newcommand\blabl{}
8\end_preamble
9\use_default_options false
10\begin_modules
11theorems-ams
12theorems-ams-extended
13\end_modules
14\language english
15\inputencoding auto
16\font_roman lmodern
17\font_sans default
18\font_typewriter default
19\font_default_family default
20\font_sc false
21\font_osf false
22\font_sf_scale 100
23\font_tt_scale 100
24
25\graphics default
26\paperfontsize default
27\spacing single
28\use_hyperref true
29\pdf_bookmarks true
30\pdf_bookmarksnumbered false
31\pdf_bookmarksopen false
32\pdf_bookmarksopenlevel 1
33\pdf_breaklinks false
34\pdf_pdfborder false
35\pdf_colorlinks false
36\pdf_backref false
37\pdf_pdfusetitle true
38\papersize default
39\use_geometry false
40\use_amsmath 1
41\use_esint 0
42\cite_engine basic
43\use_bibtopic false
44\paperorientation portrait
45\secnumdepth 3
46\tocdepth 3
47\paragraph_separation indent
48\defskip medskip
49\quotes_language english
50\papercolumns 1
51\papersides 1
52\paperpagestyle default
53\tracking_changes false
54\output_changes false
55\author ""
56\author ""
57\end_header
58
59\begin_body
60
61\begin_layout Standard
62\begin_inset FormulaMacro
63\newcommand{\isa}[1]{i_{\alpha#1}}
64{i_{\alpha#1}}
65\end_inset
66
67
68\begin_inset FormulaMacro
69\newcommand{\isb}[1]{i_{\beta#1}}
70{i_{\beta#1}}
71\end_inset
72
73
74\begin_inset FormulaMacro
75\newcommand{\Dt}{\Delta t}
76{\Delta t}
77\end_inset
78
79
80\begin_inset FormulaMacro
81\newcommand{\om}{\omega}
82{\omega}
83\end_inset
84
85
86\begin_inset FormulaMacro
87\newcommand{\th}{\vartheta}
88{\vartheta}
89\end_inset
90
91
92\begin_inset FormulaMacro
93\newcommand{\usa}[1]{u_{\alpha#1}}
94{u_{\alpha#1}}
95\end_inset
96
97
98\begin_inset FormulaMacro
99\newcommand{\usb}[1]{u_{\beta#1}}
100{u_{\beta#1}}
101\end_inset
102
103
104\end_layout
105
106\begin_layout Title
107PMSM system description
108\end_layout
109
110\begin_layout Section
111Model of PMSM Drive
112\end_layout
113
114\begin_layout Standard
115Permanent magnet synchronous machine (PMSM) drive with surface magnets on
116 the rotor is described by conventional equations of PMSM in the stationary
117 reference frame:
118\begin_inset Formula \begin{align}
119\frac{d\isa{}}{dt} & =-\frac{R_{s}}{L_{s}}\isa{}+\frac{\Psi_{PM}}{L_{s}}\omega_{me}\sin\th+\frac{\usa{}}{L_{s}},\nonumber \\
120\frac{d\isb{}}{dt} & =-\frac{R_{s}}{L_{s}}\isb{}-\frac{\Psi_{PM}}{L_{s}}\omega_{me}\cos\th+\frac{\usb{}}{L_{s}},\label{eq:simulator}\\
121\frac{d\om}{dt} & =\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{}\cos(\th)-\isa{}\sin(\th)\right)-\frac{B}{J}\om-\frac{p_{p}}{J}T_{L},\nonumber \\
122\frac{d\th}{dt} & =\omega_{me}.\nonumber \end{align}
123
124\end_inset
125
126Here,
127\begin_inset Formula $\isa{}$
128\end_inset
129
130,
131\begin_inset Formula $\isb{}$
132\end_inset
133
134,
135\begin_inset Formula $\usa{}$
136\end_inset
137
138 and
139\begin_inset Formula $\usb{}$
140\end_inset
141
142 represent stator current and voltage in the stationary reference frame,
143 respectively;
144\begin_inset Formula $\om$
145\end_inset
146
147 is electrical rotor speed and
148\begin_inset Formula $\th$
149\end_inset
150
151 is electrical rotor position.
152 
153\begin_inset Formula $R_{s}$
154\end_inset
155
156 and
157\begin_inset Formula $L_{s}$
158\end_inset
159
160 is stator resistance and inductance respectively,
161\begin_inset Formula $\Psi_{pm}$
162\end_inset
163
164 is the flux of permanent magnets on the rotor,
165\begin_inset Formula $B$
166\end_inset
167
168 is friction and
169\begin_inset Formula $T_{L}$
170\end_inset
171
172 is load torque,
173\begin_inset Formula $J$
174\end_inset
175
176 is moment of inertia,
177\begin_inset Formula $p_{p}$
178\end_inset
179
180 is the number of pole pairs,
181\begin_inset Formula $k_{p}$
182\end_inset
183
184 is the Park constant.
185\end_layout
186
187\begin_layout Standard
188The sensor-less control scenario arise when sensors of the speed and position
189 (
190\begin_inset Formula $\om$
191\end_inset
192
193 and
194\begin_inset Formula $\th$
195\end_inset
196
197) are missing (from various reasons).
198 Then, the only observed variables are:
199\begin_inset Formula \begin{equation}
200y_{t}=\left[\begin{array}{c}
201\isa{}(t),\isb{}(t),\usa{}(t),\usb{}(t)\end{array}\right].\label{eq:obs}\end{equation}
202
203\end_inset
204
205Which are, however, observed only up to some precision.
206\end_layout
207
208\begin_layout Standard
209Discretization of the model (
210\begin_inset CommandInset ref
211LatexCommand ref
212reference "eq:simulator"
213
214\end_inset
215
216) was performed using Euler method with the following result:
217\begin_inset Formula \begin{align*}
218\isa{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isa{,t}+\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\sin\vartheta_{e,t}+\usa{,t}\frac{\Dt}{L_{s}},\\
219\isb{,t+1} & =(1-\frac{R_{s}}{L_{s}}\Dt)\isb{,t}-\frac{\Psi_{pm}}{L_{s}}\Dt\omega_{t}\cos\vartheta_{t}+\usb{,t}\frac{\Dt}{L_{s}},\\
220\om_{t+1} & =(1-\frac{B}{J}\Dt)\om_{t}+\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right)-\frac{p_{p}}{J}T_{L}\Dt,\\
221\vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\end{align*}
222
223\end_inset
224
225In this work, we consider parameters of the model known, we can make the
226 following substitutions to simplify notation,
227\begin_inset Formula $a=1-\frac{R_{s}}{L_{s}}\Dt$
228\end_inset
229
230,
231\begin_inset Formula $b=\frac{\Psi_{pm}}{L_{s}}\Dt$
232\end_inset
233
234,
235\begin_inset Formula $c=\frac{\Dt}{L_{s}}$
236\end_inset
237
238,
239\begin_inset Formula $d=1-\frac{B}{J}\Dt$
240\end_inset
241
242,
243\family roman
244\series medium
245\shape up
246\size normal
247\emph off
248\bar no
249\noun off
250\color none
251
252\begin_inset Formula $e=\Dt\frac{k_{p}p_{p}^{2}\Psi_{pm}}{J}$
253\end_inset
254
255, which results in a simplified model:
256\family default
257\series default
258\shape default
259\size default
260\emph default
261\bar default
262\noun default
263\color inherit
264 
265\begin_inset Formula \begin{align}
266\isa{,t+1} & =a\,\isa{,t}+b\omega_{t}\sin\vartheta_{t}+c\usa{,t},\nonumber \\
267\isb{,t+1} & =a\,\isb{,t}-b\omega_{t}\cos\vartheta_{t}+c\usb{,t},\label{eq:model-simple}\\
268\om_{t+1} & =d\om_{t}+e\left(\isb{,t}\cos(\th_{t})-\isa{,t}\sin(\th_{t})\right),\nonumber \\
269\vartheta_{t+1} & =\vartheta_{t}+\omega_{t}\Dt.\nonumber \end{align}
270
271\end_inset
272
273
274\end_layout
275
276\begin_layout Standard
277The above equations can be aggregated into state
278\begin_inset Formula $x_{t}=[\isa{,t},\isb{,t},\om_{t},\th_{t}]$
279\end_inset
280
281 will be denoted as
282\begin_inset Formula $x_{t+1}=g(x_{t},u_{t})$
283\end_inset
284
285.
286\end_layout
287
288\begin_layout Subsection
289Gaussian model of disturbances
290\end_layout
291
292\begin_layout Standard
293This model is motivated by the well known Kalman filter, which is optimal
294 for linear system with Gaussian noise.
295 Hence, we model all disturbances to have covariance matrices
296\begin_inset Formula $Q_{t}$
297\end_inset
298
299 and
300\begin_inset Formula $R_{t}$
301\end_inset
302
303 for the state
304\begin_inset Formula $x_{t}$
305\end_inset
306
307 and observations
308\begin_inset Formula $y_{t}$
309\end_inset
310
311 respectively.
312\begin_inset Formula \begin{align*}
313x_{t+1} & \sim\mathcal{N}(g(x_{t}),Q_{t})\\
314y_{t} & \sim\mathcal{N}([\isa{,t},\isb{,t}]',R_{t})\end{align*}
315
316\end_inset
317
318
319\end_layout
320
321\begin_layout Standard
322Under this assumptions, Bayesian estimation of the state,
323\begin_inset Formula $x_{t}$
324\end_inset
325
326, can be approximated by so called Extended Kalman filter which approximates
327 posterior density of the state by a Gaussian
328\begin_inset Formula \[
329f(x_{t}|y_{1}\ldots y_{t})=\mathcal{N}(\hat{x}_{t},S_{t}).\]
330
331\end_inset
332
333Its sufficient statistics
334\begin_inset Formula $S_{t}=\left[\hat{x}_{t},P_{t}\right]$
335\end_inset
336
337 is evaluated recursively as follows:
338\begin_inset Formula \begin{eqnarray}
339\hat{x}_{t} & = & g(\hat{x}_{t-1})-K\left(y_{t}-h(\hat{x}_{t-1})\right).\label{eq:ekf_mean}\\
340R_{y} & = & CP_{t-1}C'+R_{t},\nonumber \\
341K & = & P_{t-1}C'R_{y}^{-1},\nonumber \\
342S_{t} & = & P_{t-1}-P_{t-1}C'R_{y}^{-1}CP_{t-1},\\
343P_{t} & = & AS_{t}A'+Q_{t}.\label{eq:ekf_cov}\end{eqnarray}
344
345\end_inset
346
347where
348\begin_inset Formula $A=\frac{d}{dx_{t}}g(x_{t})$
349\end_inset
350
351,
352\begin_inset Formula $C=\frac{d}{dx_{t}}h(x_{t})$
353\end_inset
354
355,
356\begin_inset Formula $g(x_{t})$
357\end_inset
358
359 is model (
360\begin_inset CommandInset ref
361LatexCommand ref
362reference "eq:model-simple"
363
364\end_inset
365
366) and
367\begin_inset Formula $h(x_{t})$
368\end_inset
369
370 direct observation of
371\begin_inset Formula $y_{t}=[\isa{,t},\isb{,t}]$
372\end_inset
373
374, i.e.
375\begin_inset Formula \[
376A=\left[\begin{array}{cccc}
377a & 0 & b\sin\th & b\om\cos\th\\
3780 & a & -b\cos\th & b\om\sin\th\\
379-e\sin\th & e\cos\th & d & -e(\isb{}\sin\th+\isa{}\cos\th)\\
3800 & 0 & \Dt & 1\end{array}\right],\quad C=\left[\begin{array}{cccc}
3811 & 0 & 0 & 0\\
3820 & 1 & 0 & 0\end{array}\right]\]
383
384\end_inset
385
386
387\end_layout
388
389\begin_layout Standard
390Covariance matrices of the system
391\begin_inset Formula $Q$
392\end_inset
393
394 and
395\begin_inset Formula $R$
396\end_inset
397
398 are supposed to be known.
399\end_layout
400
401\begin_layout Subsection
402Test system
403\end_layout
404
405\begin_layout Standard
406A real PMSM system on which the algorithms will be tested has parameters:
407\end_layout
408
409\begin_layout Standard
410\begin_inset Formula \begin{eqnarray*}
411R_{s} & = & 0.28;\\
412L_{s} & = & 0.003465;\\
413\Psi_{pm} & = & 0.1989;\\
414k_{p} & = & 1.5\\
415p & = & 4.0;\\
416J & = & 0.04;\\
417\Delta t & = & 0.000125\end{eqnarray*}
418
419\end_inset
420
421which yields
422\begin_inset Formula \begin{eqnarray*}
423a & = & 0.9898\\
424b & = & 0.0072\\
425c & = & 0.0361\\
426d & = & 1\\
427e & = & 0.0149\end{eqnarray*}
428
429\end_inset
430
431The covaraince matrices
432\begin_inset Formula $Q$
433\end_inset
434
435 and
436\begin_inset Formula $R$
437\end_inset
438
439 are assumed to be known.
440 For the initial tests, we can use the following values:
441\end_layout
442
443\begin_layout Standard
444\begin_inset Formula \begin{eqnarray*}
445Q & = & \mathrm{diag}(0.0013,0.0013,5e-6,1e-10),\\
446R & = & \mathrm{diag}(0.0006,0.0006).\end{eqnarray*}
447
448\end_inset
449
450
451\end_layout
452
453\begin_layout Standard
454Limits:
455\begin_inset Formula \begin{align*}
456u_{\alpha,max} & =50V, & u_{\alpha,min} & =-50V,\\
457u_{\beta,max} & =50V. & u_{\beta,min} & =-50V,\end{align*}
458
459\end_inset
460
461
462\end_layout
463
464\begin_layout Standard
465Perhaps better:
466\begin_inset Formula \[
467u_{\alpha}^{2}+u_{\beta}^{2}<100^{2}.\]
468
469\end_inset
470
471
472\end_layout
473
474\begin_layout Section
475Control
476\end_layout
477
478\begin_layout Standard
479The task is to reach predefined speed
480\begin_inset Formula $\overline{\omega}_{t}$
481\end_inset
482
483.
484\end_layout
485
486\begin_layout Standard
487For simplicity, we will assume additive loss function:
488\begin_inset Formula \[
489l(x_{t},u_{t})=(\omega_{t}-\overline{\omega}_{t})^{2}+\psi(\usa{,t}^{2}+\usb{,t}^{2}).\]
490
491\end_inset
492
493Here,
494\begin_inset Formula $\psi$
495\end_inset
496
497 is the chosen penalization of the inputs, in this case
498\begin_inset Formula $\psi=0$
499\end_inset
500
501.
502 
503\end_layout
504
505\begin_layout Standard
506Following the standard dynamic programming approach, optimization of the
507 loss function can be done recursively, as follows:
508\begin_inset Formula \[
509V(x_{t-1},u_{t-1})=\arg\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(x_{t},u_{t})\right\} ,\]
510
511\end_inset
512
513where
514\begin_inset Formula $V(x_{t},u_{t})$
515\end_inset
516
517 is the Bellman function.
518 Since the model evolution is stochastic, we can reformulate it in terms
519 of sufficient statistics,
520\begin_inset Formula $S$
521\end_inset
522
523 as follows:
524\begin_inset Formula \[
525V(S_{t-1})=\min_{u_{t}}\mathsf{E}_{f(x_{t},y_{t}|x_{t-1})}\left\{ l(x_{t},u_{t})+V(S_{t})\right\} .\]
526
527\end_inset
528
529
530\end_layout
531
532\begin_layout Standard
533Representation of the Bellman function depends on chosen approximation.
534\end_layout
535
536\begin_layout Subsection
537Test Scenarios
538\end_layout
539
540\begin_layout Standard
541With almost full information, design of the control strategy should be almost
542 trivial:
543\begin_inset Formula \begin{eqnarray*}
544\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
545P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,0.01]).\end{eqnarray*}
546
547\end_inset
548
549
550\end_layout
551
552\begin_layout Standard
553The difficulty arise with growing initial covariance matrix:
554\begin_inset Formula \begin{eqnarray*}
555\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
556P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,1]).\end{eqnarray*}
557
558\end_inset
559
560
561\end_layout
562
563\begin_layout Standard
564Or even worse:
565\begin_inset Formula \begin{eqnarray*}
566\hat{\isa{}} & = & 0,\,\hat{\isb{}}=0,\hat{\omega}=1,\th=\frac{\pi}{2},\\
567P_{t} & = & \mathrm{diag}([0.01,0.01,0.01,10]).\end{eqnarray*}
568
569\end_inset
570
571
572\end_layout
573
574\begin_layout Standard
575The requested value
576\begin_inset Formula $\overline{\omega}_{t}=1.0015.$
577\end_inset
578
579
580\end_layout
581
582\begin_layout Conjecture
583It is sufficient to consider hyper-state
584\begin_inset Formula $H=[\hat{i}_{\alpha},\hat{i}_{\beta},\hat{\omega},\hat{\vartheta},P(3,3),P(4,4)]$
585\end_inset
586
587.
588\end_layout
589
590\begin_layout Conjecture
591\begin_inset CommandInset bibtex
592LatexCommand bibtex
593bibfiles "bibtex/vs,bibtex/vs-world,bibtex/world_classics,bibtex/world,new_bib_PS"
594options "plain"
595
596\end_inset
597
598
599\end_layout
600
601\end_body
602\end_document
Note: See TracBrowser for help on using the browser.