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1 Model of PMSM Drive

Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:
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Here, i, ig, uo and ug represent stator current and voltage in the stationary reference
frame, respectively; w is electrical rotor speed and ¥ is electrical rotor position. R
and Ly is stator resistance and inductance respectively, ¥,,, is the flux of permanent
magnets on the rotor, B is friction and 77, is load torque, J is moment of inertia, p, is
the number of pole pairs, k), is the Park constant.

The sensor-less control scenario arise when sensors of the speed and position (w and
) are missing (from various reasons). Then, the only observed variables are:

yo = | da(t):is(t), ua(t), us(t) |. (2)

Which are, however, observed only up to some precision.
Discretization of the model was performed using Euler method with the following
result:
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In this work, we consider parameters of the model known, we can make the following
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, which results in a simplified model:

la,i+1 = Qla + bwy sin ¥y + cug ¢,

18441 = aigy — bwycos Uy + cugy, (3)
Wi+1 = dwy + € (igt cos(Vy) — i, sin(dy)) ,
V1 = V¢ + wiAt.

The above equations can be aggregated into state x¢ = [iq, 15, wt, U¢) Will be denoted
as Te1 = g(xe, ur).

1.1 Transformation to d-q coordinates

For many applications, it is advantageous to consider altervative coordinate system de-

noted d-q as follows
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Under this transformation, the whole model can be transformed into d-q coordinates.
In this text, we will transform only one single quantity, Ly and L, for which it holds

L4 = kL,. Then,
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Then, model of the drive is changed to
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Transformation to full d-q
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1.2 Gaussian model of disturbances

This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Q: and R; for the state x; and observations y; respectively.

Tip1 ~ N(g(xt), Q)
Yt ~ N([ia,t, iﬁ,t]/, Rt)

(4)

Under this assumptions, Bayesian estimation of the state, x;, can be approximated by
so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

fQelyr .. oye) = N (24, Sp).

Its sufficient statistics Sy = [, P;] is evaluated recursively as follows:

T = g(@-1) — K (yr — h(&:-1)).- (5)
R, = CP_1C'+ Ry,
K = P_C'R,",
S¢ = Pio1— P C'R;'CP_y, (6)
P, = ASA + Q. (7)
where A = d%tg(xt), C = d%lth(%t), g(x¢) is model and h(z;) direct observation of
Yt = [ia,taiﬁ,t]a i.e.
a 0 bsin v bw cos ¥
A 0 a —bcos ¥ bw sin ¥ - 1 000
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Covariance matrices of the system ) and R are supposed to be known.

1.3 Test system

A real PMSM system on which the algorithms will be tested has parameters:

R, = 0.28;
Ly = 0.003465;
Uy, = 0.1989;

k, = 1.5
p = 4.0
J = 0.04;

At = 0.000125

which yields

a = 0.9898
b = 0.0072
c = 0.0361
d = 1

e = 0.0149

The covaraince matrices () and R are assumed to be known. For the initial tests, we
can use the following values:

Q = diag(0.0013,0.0013,5¢ — 6, le — 10),
R = diag(0.0006,0.0006).

Limits:

Ua,mar = 50V, Ua,min = =50V,
UB,max = 50V. UB min = —5OV,

Perhaps better:
ug + uf < 1007,



2 Control

The task is to reach predefined speed w;.
For simplicity, we will assume additive loss function:

Uzpup) = (wp—wp)* + Q(Ui,t + U%t)
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Here, T is the chosen penalization of the inputs, which remains to be tuned.
Note: classical notation of penalization matrices is () and R, but it conflicts wit @

and R in .
Following the standard dynamic programming approach, optimization of the loss func-
tion can be done recursively, as follows:

V(l‘tfla utfl) = arg H}L}Sn Ef(zt,yt|33t71) {l(xtv ut) + V($ta ut)} )

where V' (x¢,u) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V(St_l) = n’llén Ef(lvt,yt‘fﬁt—l) {Z(It, ut) + V(St)} .

Representation of the Bellman function depends on chosen approximation.

2.1 LQG control

Control of linear state-space model with Gaussian noise

Ty = Axt—l‘f‘BUt'f‘Q%Uta
Yyt = Cxy + Dug + R2w,.

to minimize loss function
—\/— — /
L = (xvy — 7)) E(xy — Tp) + up Yy

Optimal solution in the sense of dynamic programming on horizon t + h is:

w = Ly (T —Ty),
Li = —(B'S;11B+T)'B'Si 1A,
Sy = A/(StJrl — St+1B(B,St+1B + T)_lB,St+1)A + =,

This solution is certainty equivalent, i.e. only the first moment, &, of the Kalman filter
is used.



2.2 PI control
The classical control is based on transformation to dq reference frame:
iqg = fiqcos(V)+ igsin(V),
iq = igcos(V) — iqsin(d).
Desired i, current, i4, is derived using PI controller
ig=PIl(w—w, P, I;).

This current needs to be achieved through voltages uq, u, which are again obtained from
a PI controller

uqg = Pl(—ig, Py, 1),

ug = Pl(ig—iq, Py, 1y).

These are compensated (for some reason) as follows:

ug = uq— Lswig,
Conversion to uq,ug is
e = |U] cos(9), us = U] sin(¢)
arctan(-2) + o ug >0
Ul = \/u? +u2, = d -
vl d = a ¢ arctan(%) +7rT+Y ug <0

PI controller is defined as follows:

x = Pl(e,P1I)
= Pe+1(Si—1+¢€)
St = St_l +€

Constants for the system:
P, =3, I, =0.00375, P, =20, I, =0.5.

The requested values for w should be kept in interval < —30,30 >.

2.3 Cautious LQG control

Uncertainty in A.
Sigma points: (9 = 2 + hu;, v; are eigenvectors of P.

B2 A(z)QA(z)z) = %Zm'A(x(i))QA(i)(x)x
= 2'Z2

Uncented transform...



2.4 Poor-man’s dual LQG control

Various heuristic solutions to dual extension of LQG has been proposed. Most of them
is based on approximation of the loss function

Lt = (:Et — ft)/E(l‘t - ft) + (Ut - Ut)"f(ut - ﬂt) + DUALiTERM

where DUAL_TERM is typically a function of P;o.
To be continued...

2.5 Test Scenarios

With almost full information, design of the control strategy should be almost trivial:

i = 0,1’};:0,@:1,19:%,

P, = diag(]0.01,0.01,0.01,0.01]).

The difficulty arise with growing initial covariance matrix:

A

io = 0,ig=0,0=1,0=
P, = diag([0.01,0.01,0.01,
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Or even worse:

A~

o = 0,ip=0,0=1,9=
P, = diag([0.01,0.01,0.01,

9

0)).
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The requested value w; = 1.0015.

Conjecture 1. It is sufficient to consider hyper-state H = [in, i, 0, P(3,3), P(4,4)].
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