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1 Model of PMSM Drive
Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:

diα
dt

= −Rs
Ls
iα + ΨPM

Ls
ωme sinϑ+ uα

Ls
,

diβ
dt

= −Rs
Ls
iβ −

ΨPM

Ls
ωme cosϑ+ uβ

Ls
, (1)

dω

dt
=
kpp

2
pΨpm

J
(iβ cos(ϑ)− iα sin(ϑ))− B

J
ω − pp

J
TL,

dϑ

dt
= ωme.

Here, iα, iβ, uα and uβ represent stator current and voltage in the stationary reference
frame, respectively; ω is electrical rotor speed and ϑ is electrical rotor position. Rs
and Ls is stator resistance and inductance respectively, Ψpm is the flux of permanent
magnets on the rotor, B is friction and TL is load torque, J is moment of inertia, pp is
the number of pole pairs, kp is the Park constant.
The sensor-less control scenario arise when sensors of the speed and position (ω and

ϑ) are missing (from various reasons). Then, the only observed variables are:

yt =
[
iα(t), iβ(t), uα(t), uβ(t)

]
. (2)

Which are, however, observed only up to some precision.
Discretization of the model (1) was performed using Euler method with the following

result:

iα,t+1 = (1− Rs
Ls

∆t)iα,t + Ψpm

Ls
∆tωt sinϑe,t + uα,t

∆t
Ls
,

iβ,t+1 = (1− Rs
Ls

∆t)iβ,t −
Ψpm

Ls
∆tωt cosϑt + uβ,t

∆t
Ls
,

ωt+1 = (1− B

J
∆t)ωt + ∆t

kpp
2
pΨpm

J
(iβ,t cos(ϑt)− iα,t sin(ϑt))−

pp
J
TL∆t,

ϑt+1 = ϑt + ωt∆t.
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In this work, we consider parameters of the model known, we can make the following
substitutions to simplify notation, a = 1 − Rs

Ls
∆t, b = Ψpm

Ls
∆t, c = ∆t

Ls
, d = 1 − B

J ∆t,

e = ∆tkpp2
pΨpm

J , which results in a simplified model:

iα,t+1 = a iα,t + bωt sinϑt + cuα,t,

iβ,t+1 = a iβ,t − bωt cosϑt + cuβ,t, (3)
ωt+1 = dωt + e (iβ,t cos(ϑt)− iα,t sin(ϑt)) ,
ϑt+1 = ϑt + ωt∆t.

The above equations can be aggregated into state xt = [iα,t, iβ,t, ωt, ϑt] will be denoted
as xt+1 = g(xt, ut).

1.1 Transformation to d-q coordinates
For many applications, it is advantageous to consider altervative coordinate system de-
noted d-q as follows [

d
q

]
=

[
cosϑ sinϑ
− sinϑ cosϑ

] [
α
β

]
[
α
β

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
d
q

]

Under this transformation, the whole model (4) can be transformed into d-q coordinates.
In this text, we will transform only one single quantity, Ld and Lq for which it holds

Ld = kLq. Then, [
Lα
Lβ

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
Ld
Lq

]
.

= Ld

[
cosϑ − sinϑ
sinϑ cosϑ

] [
k
1

]

= L

[
k cosϑ − sinϑ
k sinϑ cosϑ

]
= L

[
kcϑ
ksϑ

]
.

Then, model of the drive is changed to

iα,t+1 = (1− Rs
Lskcϑ

∆t)iα,t + Ψpm

Lskcϑ
∆tωt sinϑe,t + uα,t

∆t
Lskcϑ

,

iβ,t+1 = (1− Rs
Lsksϑ

∆t)iβ,t −
Ψpm

Lsksϑ
∆tωt cosϑt + uβ,t

∆t
Lsksϑ

,

ωt+1 = (1− B

J
∆t)ωt + ∆t

kpp
2
pΨpm

J
(iβ,t cos(ϑt)− iα,t sin(ϑt))−

pp
J
TL∆t,

ϑt+1 = ϑt + ωt∆t.
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Transformation to full d-q

id,t+1 = (1− Rs
Ld

∆t)id,t + Lq
Ld
iq,t∆tωt + ud,t

∆t
Ld
,

iq,t+1 = −Ld
Lq

∆tωtid,t + (1− Rs
Lq

∆t)iq,t −
Ψpm

Lq
∆tωt + uq,t

∆t
Lq
,

ωt+1 = (1− B

J
∆t)︸ ︷︷ ︸

≈1

ωt + ∆t
kpp

2
p

J
((Ld − Lq)id + Ψpm)iq

ϑt+1 = ϑt + ∆tωt

Observation: [
iα
iβ

]
=

[
cosϑ − sinϑ
sinϑ cosϑ

] [
id
iq

]
+ et

1.2 Gaussian model of disturbances
This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Qt and Rt for the state xt and observations yt respectively.

xt+1 ∼ N (g(xt), Qt) (4)
yt ∼ N ([iα,t, iβ,t]′, Rt)

Under this assumptions, Bayesian estimation of the state, xt, can be approximated by
so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

f(xt|y1 . . . yt) = N (x̂t, St).

Its sufficient statistics St = [x̂t, Pt] is evaluated recursively as follows:

x̂t = g(x̂t−1)−K (yt − h(x̂t−1)) . (5)
Ry = CPt−1C

′ +Rt,

K = Pt−1C
′R−1

y ,

St = Pt−1 − Pt−1C
′R−1

y CPt−1, (6)
Pt = AStA

′ +Qt. (7)

where A = d
dxt
g(xt), C = d

dxt
h(xt), g(xt) is model (3) and h(xt) direct observation of

yt = [iα,t, iβ,t], i.e.

A =


a 0 b sinϑ bω cosϑ
0 a −b cosϑ bω sinϑ

−e sinϑ e cosϑ d −e(iβ sinϑ+ iα cosϑ)
0 0 ∆t 1

 , C =
[

1 0 0 0
0 1 0 0

]

3



B =


c 0
0 c
0 0
0 0


Covariance matrices of the system Q and R are supposed to be known.

1.3 Test system
A real PMSM system on which the algorithms will be tested has parameters:

Rs = 0.28;
Ls = 0.003465;

Ψpm = 0.1989;
kp = 1.5
p = 4.0;
J = 0.04;

∆t = 0.000125

which yields

a = 0.9898
b = 0.0072
c = 0.0361
d = 1
e = 0.0149

The covaraince matrices Q and R are assumed to be known. For the initial tests, we
can use the following values:

Q = diag(0.0013, 0.0013, 5e− 6, 1e− 10),
R = diag(0.0006, 0.0006).

Limits:

uα,max = 50V, uα,min = −50V,
uβ,max = 50V. uβ,min = −50V,

Perhaps better:
u2
α + u2

β < 1002.
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2 Control
The task is to reach predefined speed ωt.
For simplicity, we will assume additive loss function:

l(xt, ut) = (ωt − ωt)2 + q(u2
α,t + u2

β,t).

= (ωt − ωt)Ξ(ωt − ωt) + [uαt, uβt]
[
υ 0
0 υ

]
︸ ︷︷ ︸

Υ

[
uαt
uβt

]

Here, Υ is the chosen penalization of the inputs, which remains to be tuned.
Note: classical notation of penalization matrices is Q and R, but it conflicts wit Q

and R in (4).
Following the standard dynamic programming approach, optimization of the loss func-

tion can be done recursively, as follows:

V (xt−1, ut−1) = arg min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (xt, ut)} ,

where V (xt, ut) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V (St−1) = min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (St)} .

Representation of the Bellman function depends on chosen approximation.

2.1 LQG control
Control of linear state-space model with Gaussian noise

xt = Axt−1 +But +Q
1
2 vt,

yt = Cxt +Dut +R
1
2wt.

to minimize loss function

Lt = (xt − xt)′Ξ(xt − xt) + u′tΥut.

Optimal solution in the sense of dynamic programming on horizon t+ h is:

ut = Lt (x̂t − xt) ,
Lt = −(B′St+1B + Υ)−1B′St+1A,

St = A′(St+1 − St+1B(B′St+1B + Υ)−1B′St+1)A+ Ξ,

This solution is certainty equivalent, i.e. only the first moment, x̂, of the Kalman filter
is used.
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2.2 PI control
The classical control is based on transformation to dq reference frame:

id = iα cos(ϑ) + iβ sin(ϑ),
iq = iβ cos(ϑ)− iα sin(ϑ).

Desired iq current, iq, is derived using PI controller

iq = PI(ω − ω, Pi, Ii).

This current needs to be achieved through voltages ud, uq which are again obtained from
a PI controller

ud = PI(−id, Pu, Iu),
uq = PI(iq − iq, Pu, Iu).

These are compensated (for some reason) as follows:

ud = ud − LSωiq,
uq = uq + Ψpmω.

Conversion to uα, uβ is

uα = |U | cos(φ), uβ = |U | sin(φ)

|U | =
√
u2
d + u2

q , φ =
{

arctan(uq

ud
) + ϑ ud ≥ 0

arctan(uq

ud
) + π + ϑ ud < 0

PI controller is defined as follows:

x = PI(ε, P, I)
= Pε+ I(St−1 + ε)

St = St−1 + ε

Constants for the system:

Pi = 3, Ii = 0.00375, Pu = 20, Iu = 0.5.

The requested values for ω should be kept in interval < −30, 30 >.

2.3 Cautious LQG control
Uncertainty in A.
Sigma points: x(i) = x̂+ hvi, vi are eigenvectors of P .

E{x′A(x)QA(x)x} = 1
n

∑
x′A(x(i))QA(i)(x)x

= x′Zx′

Uncented transform...
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2.4 Poor-man’s dual LQG control
Various heuristic solutions to dual extension of LQG has been proposed. Most of them
is based on approximation of the loss function

Lt = (xt − xt)′Ξ(xt − xt) + (ut − ut)′Υ(ut − ut) +DUAL_TERM.

where DUAL_TERM is typically a function of Pt+2.
To be continued...

2.5 Test Scenarios
With almost full information, design of the control strategy should be almost trivial:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 0.01]).

The difficulty arise with growing initial covariance matrix:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 1]).

Or even worse:

îα = 0, îβ = 0, ω̂ = 1, ϑ = π

2 ,

Pt = diag([0.01, 0.01, 0.01, 10]).

===
The requested value ωt = 1.0015.

Conjecture 1. It is sufficient to consider hyper-state H = [̂iα, îβ, ω̂, ϑ̂, P (3, 3), P (4, 4)].
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