PMSM system description
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1 Model of PMSM Drive

Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:
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Here, i, ig, uo and ug represent stator current and voltage in the stationary reference
frame, respectively; w is electrical rotor speed and ¥ is electrical rotor position. R
and Ly is stator resistance and inductance respectively, ¥,,, is the flux of permanent
magnets on the rotor, B is friction and 77, is load torque, J is moment of inertia, p, is
the number of pole pairs, k), is the Park constant.

The sensor-less control scenario arise when sensors of the speed and position (w and
) are missing (from various reasons). Then, the only observed variables are:

yo = | da(t):is(t), ua(t), us(t) |. (2)

Which are, however, observed only up to some precision.
Discretization of the model was performed using Euler method with the following
result:
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In this work, we consider parameters of the model known, we can make the following
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, which results in a simplified model:

la,i+1 = Qla + bwy sin ¥y + cug ¢,

18441 = aigy — bwycos Uy + cugy, (3)
Wi+1 = dwy + € (igt cos(Vy) — i, sin(dy)) ,
V1 = V¢ + wiAt.

The above equations can be aggregated into state x¢ = [iq, 15, wt, U¢) Will be denoted
as Te1 = g(xe, ur).

1.1 Transformation to d-q coordinates

For many applications, it is advantageous to consider altervative coordinate system de-

noted d-q as follows
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Under this transformation, the whole model can be transformed into d-q coordinates.
In this text, we will transform only one single quantity, Ly and L, for which it holds

L4 = kL,. Then,
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Then, model of the drive is changed to
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Transformation to full d-q
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1.2 Gaussian model of disturbances

This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Q: and R; for the state x; and observations y; respectively.

Tip1 ~ N(g(xt), Q)
Yt ~ N([ia,t, iﬁ,t]/, Rt)

(4)

Under this assumptions, Bayesian estimation of the state, x;, can be approximated by
so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

fQelyr .. oye) = N (24, Sp).

Its sufficient statistics Sy = [, P;] is evaluated recursively as follows:

T = g(@-1) — K (yr — h(&:-1)).- (5)
R, = CP_1C'+ Ry,
K = P_C'R,",
S¢ = Pio1— P C'R;'CP_y, (6)
P, = ASA + Q. (7)
where A = d%tg(xt), C = d%lth(%t), g(x¢) is model and h(z;) direct observation of
Yt = [ia,taiﬁ,t]a i.e.
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Covariance matrices of the system ) and R are supposed to be known.

1.2.1 Reduced order version

Equations ca be restructured by considering iy, and i,3 as external observations.
Then the state variables are x; = [wy, ¥;] and as follows:

Wil = dwy + € (ig s cos(Vy) — iasin(dy)), (8)
Vip1 = U + wiAt.
and the onbservation equations are
ioz,t—i—l =a ia,t + bwt sin 19,5 + Clqyts
i84+1 = igy — bwcosVy + cugy, 9)

These equations are used by the EKF to update estimates of mean values. The new
matrices A and C are
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1.3 Test system

A real PMSM system on which the algorithms will be tested has parameters:

Rs = 0.28;
Ls = 0.003465;
Yy = 0.1989;
ky, = 1.5
p = 4.0
J = 0.04;

At = 0.000125

which yields

a = 0.9898
b = 0.0072
c = 0.0361
d =1

e = 0.0149



The covaraince matrices () and R are assumed to be known. For the initial tests, we
can use the following values:

Q = diag(0.0013,0.0013,5e — 6, 1e — 10),
R = diag(0.0006,0.0006).

Limits:

Ua,mazr = 50V Ua,min = =50V,
UB,max = 50V. UB min = —5OV,

Perhaps better:
ug + uf < 100°.

2 Control

The task is to reach predefined speed w;.
For simplicity, we will assume additive loss function:

Uzt ur) = (wr— @)+ q(ud, +udy).
o B v 0 U
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Here, T is the chosen penalization of the inputs, which remains to be tuned.

Note: classical notation of penalization matrices is () and R, but it conflicts wit @
and R in ({4]).

Following the standard dynamic programming approach, optimization of the loss func-
tion can be done recursively, as follows:

V(:Etfl, utfl) = arg Hzlén Ef($t7yt|xt71) {l(-fft, ut) + V(:I?t, ut)} s

where V' (x4, u;) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V(St_l) = rrllén Ef(wz,yt\xtfﬂ {l(xt, ut) + V(St)} .

Representation of the Bellman function depends on chosen approximation.



2.1 LQG control
Control of linear state-space model with Gaussian noise
vy = Axi_q1+ Bup+ Q%vt,
v = Cxy+ Dug+ R%wt.
to minimize loss function
Ly = (vy — &) E(2y — Tp) + uj Yy

Optimal solution in the sense of dynamic programming on horizon t + h is:

Uy = Lt (.ﬁt — ft) s
L = —(B'Siy1B+ 1Y) 'B'Si1A4,
Sy = A'(Siy1— Si1B(B'Si 1B+ 7Y)'B'S;1)A+E,

This solution is certainty equivalent, i.e. only the first moment, Z, of the Kalman filter
is used.

2.2 PI control
The classical control is based on transformation to dq reference frame:

iqg = fiqcos(V)+ igsin(V),
iqg = 1igcos(¥) — iqsin(d).

Desired i, current, 4,4, is derived using PI controller
gq = PI(E—w,Pi,Ii).

This current needs to be achieved through voltages uq, u4 which are again obtained from
a PI controller

ug = PI(—ig, Py, I,),
ug = Pl(iqg —iq, Py, ).

These are compensated (for some reason) as follows:

ug = ug— Lswig,
Uug = Ug+ ¥Yppw.
Conversion to uq,ug is
uq = |U] cos(¢), ug = |U|sin(¢)
arctan(—2% uqg > 0
U| = \/uj + u2, ¢ = (Zd)
arctan(2) + 7+ 9 ug <0



PI controller is defined as follows:

x = Pl(eP1I)
= Pe+I(Si—1+¢€)
Sy = Si_1+e¢

Constants for the system:
P, =3, I, =0.00375, P, =20, I, =0.5.

The requested values for w should be kept in interval < —30,30 >.

2.3 Cautious LQG control

Uncertainty in A.
Sigma points: 2@ = & + hv;, v; are eigenvectors of P.

E{x' A(x)QA(z)z} = %Zx’A(x(i))QA(i)(x)x

= 272
Uncented transform...

2.4 Poor-man’s dual LQG control

Various heuristic solutions to dual extension of LQG has been proposed. Most of them
is based on approximation of the loss function

Lt = (Jﬁt — Tt)IE(IIZt - Tt) + (Ut — Ht)’T(ut - ﬁt) + DUALiTERM
where DUAL_TERM is typically a function of P;o.
To be continued...

2.5 Test Scenarios

With almost full information, design of the control strategy should be almost trivial:

~

o = 0,i5=0,0=1,0=
P, = diag([0.01,0.01,0.01,

)

01]).

The difficulty arise with growing initial covariance matrix:

ool

~

o = 0,i5=0,0=1,0=
P, diag([0.01,0.01,0.01,

el Y

).



Or even worse:

N ™

o = 0,1’%:0,@:1,19:2,
P, = diag([0.01,0.01,0.01,10]).

The requested value w; = 1.0015.

Conjecture 1. It is sufficient to consider hyper-state H = [iq,15,, 7, P(3,3), P(4,4)].
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