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1 Model of PMSM Drive
Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:
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Here, iα, iβ, uα and uβ represent stator current and voltage in the stationary reference
frame, respectively; ω is electrical rotor speed and ϑ is electrical rotor position. Rs
and Ls is stator resistance and inductance respectively, Ψpm is the flux of permanent
magnets on the rotor, B is friction and TL is load torque, J is moment of inertia, pp is
the number of pole pairs, kp is the Park constant.
The sensor-less control scenario arise when sensors of the speed and position (ω and

ϑ) are missing (from various reasons). Then, the only observed variables are:

yt =
[
iα(t), iβ(t), uα(t), uβ(t)

]
. (2)

Which are, however, observed only up to some precision.
Discretization of the model (1) was performed using Euler method with the following

result:
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In this work, we consider parameters of the model known, we can make the following
substitutions to simplify notation, a = 1 − Rs

Ls
∆t, b = Ψpm

Ls
∆t, c = ∆t

Ls
, d = 1 − B

J ∆t,

e = ∆tkpp
2
pΨpm
J , which results in a simplified model:

iα,t+1 = a iα,t + bωt sinϑt + cuα,t,

iβ,t+1 = a iβ,t − bωt cosϑt + cuβ,t, (3)
ωt+1 = dωt + e (iβ,t cos(ϑt)− iα,t sin(ϑt)) ,
ϑt+1 = ϑt + ωt∆t.

The above equations can be aggregated into state xt = [iα,t, iβ,t, ωt, ϑt] will be denoted
as xt+1 = g(xt, ut).

1.1 Gaussian model of disturbances
This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Qt and Rt for the state xt and observations yt respectively.

xt+1 ∼ N (g(xt), Qt)
yt ∼ N ([iα,t, iβ,t]′, Rt)

Under this assumptions, Bayesian estimation of the state, xt, can be approximated by
so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

f(xt|y1 . . . yt) = N (x̂t, Pt).

Its sufficient statistics St = [x̂t, Pt] is evaluated recursively as follows:

x̂t = g(x̂t−1)−K (yt − h(x̂t−1)) . (4)
Ry = C ′Pt−1C +Rt,

K = Pt−1CR
−1
y (yt − h(x̂t−1)),

Pt = A
(
Pt−1 − Pt−1C

′R−1
y CPt−1

)
A+Qt. (5)

where A = d
dxt
g(xt), C = d

dxt
h(xt), g(xt) is model (3) and h(xt) direct observation of

yt = [iα,t, iβ,t], i.e.

A =


a 0 b sinϑ bω cosϑ
0 a −b cosϑ bω sinϑ

−e sinϑ e cosϑ d −e(iβ sinϑ+ iα cosϑ)
0 0 ∆t 1

 , C =


1

1
0

0


Covariance matrices of the system Q and R are supposed to be known.
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2 Control
The task is to reach predefined speed ωt.
For simplicity, we will assume additive loss function:

l(xt, ut) = (ωt − ωt)2 + ψ(u2
α,t + u2

β,t).

Here, ψ is the chosen penalization of the inputs.
Following the standard dynamic programming approach, optimization of the loss func-

tion can be done recursively, as follows:

V (xt−1, ut−1) = arg min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (xt, ut)} ,

where V (xt, ut) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V (St−1) = min
ut

Ef(xt,yt|xt−1) {l(xt, ut) + V (St)} .

Representation of the Bellman function depends on chosen approximation.
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