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1 Model of PMSM Drive

Permanent magnet synchronous machine (PMSM) drive with surface magnets on the
rotor is described by conventional equations of PMSM in the stationary reference frame:
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Here, i, i3, uo and ug represent stator current and voltage in the stationary reference
frame, respectively; w is electrical rotor speed and ¥ is electrical rotor position. Ry
and L, is stator resistance and inductance respectively, ¥,,, is the flux of permanent
magnets on the rotor, B is friction and 17, is load torque, J is moment of inertia, p, is
the number of pole pairs, k, is the Park constant.

The sensor-less control scenario arise when sensors of the speed and position (w and
) are missing (from various reasons). Then, the only observed variables are:

v = | a(t),ig(t), ua(),us(®) |. (2)

Which are, however, observed only up to some precision.
Discretization of the model was performed using Euler method with the following
result:
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In this work, we consider parameters of the model known, we can make the following
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, which results in a simplified model:
ia,t—i—l =a ia,t + bwt sin 19,5 + Clqyt,
i1 = aigy — bwycos Uy + cugy, (3)
Wil = dwy + € (igy cos(Vy) — iasin(dy)),
Vi1 = U + wiAt.

The above equations can be aggregated into state oy = [in,, 93+, ws, ¥¢] Will be denoted
as Ty+1 = g(Te, ur).

1.1 Gaussian model of disturbances

This model is motivated by the well known Kalman filter, which is optimal for linear sys-
tem with Gaussian noise. Hence, we model all disturbances to have covariance matrices
Q: and R; for the state x; and observations y; respectively.

zip1 ~ N(g(xe), Q) (4)
Yt ~ N([iaﬂf? iﬁ,t]/, Rt)
Under this assumptions, Bayesian estimation of the state, z;, can be approximated by

so called Extended Kalman filter which approximates posterior density of the state by
a Gaussian

f(@elyr - ye) = N (&4, St).

Its sufficient statistics Sy = [, P;] is evaluated recursively as follows:

B = g(8-1) — K (ye — h(&4-1)) (5)

R, = CP,_1C" + Ry,

K = P_C'R",

St = P1— Pt—IC/Ry_lth—ly (6)

P, = ASA 4 Q. (7)
where A = d%tg(xt), C = dixth(a:t), g(z¢) is model and h(z;) direct observation of
Yt = [lat,18,4), 1-€.
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Covariance matrices of the system () and R are supposed to be known.



1.2 Test system

A real PMSM system on which the algorithms will be tested has parameters:

R, = 0.28;
L, = 0.003465;
Uy = 0.1989;

ky, = 15
p = 4.0
J = 0.04;

At = 0.000125

which yields

a = 0.9898
b = 0.0072
c = 0.0361
d =1

e = 0.0149

The covaraince matrices () and R are assumed to be known. For the initial tests, we
can use the following values:

@ = diag(0.0013,0.0013,5e — 6,1e — 10),
R = diag(0.0006,0.0006).

Limits:
Ua,max = 50V, Ua,min = =50V,
UG, max = 90V. UG min = —00V,

Perhaps better:
ug + uj < 1007,

2 Control

The task is to reach predefined speed w;.
For simplicity, we will assume additive loss function:

Hzpu) = (we—we)?+ Q(ui,t + U%t)
N . v 0 U
= (wr — W) Z(wp — @) + [vat, ust] [ 0 v ] [ u;z ]
T



Here, T is the chosen penalization of the inputs, which remains to be tuned.
Note: classical notation of penalization matrices is () and R, but it conflicts wit @

and R in ({).
Following the standard dynamic programming approach, optimization of the loss func-
tion can be done recursively, as follows:

V(wt—lv ut—l) = arg quén Ef(ﬂft,yt|l“t—1) {l<xt7 ut) + V(xta ut)} )

where V' (x¢,u;) is the Bellman function. Since the model evolution is stochastic, we can
reformulate it in terms of sufficient statistics, S as follows:

V(Stfl) = H}L&n Ef(l‘hyt‘xtfl) {l(xh ut) + V(St)} .

Representation of the Bellman function depends on chosen approximation.

2.1 LQG control

Control of linear state-space model with Gaussian noise

1
xy = Awxi_1+ Bus + Q2vy,
y = Cux+ Duy+ Riw,.

to minimize loss function
—_— \/— —_ /
Ly = (2 — T) E(we — Tt) + uy Yug.

Optimal solution in the sense of dynamic programming on horizon ¢ + h is:

w = Ly (T —Ty),
Li = —(B'Siy1B+T) 'B'Si A,
Sy = A/(StJrl — St+1B(B/St+1B -+ T)_lB,St+1)A + =,

This solution is certainty equivalent, i.e. only the first moment, &, of the Kalman filter
is used.

2.2 Poor-man’s dual LQG control

Various heuristic solutions to dual extension of LQG has been proposed. Most of them
is based on approximation of the loss function

Lt = (l‘t - ft)/E(.Tt - ft) + (Ut - Ht)’T(ut - ﬂt) + DUALiTERM

where DUAL_TERM is typically a function of P;s.
To be continued...



2.3 Test Scenarios

With almost full information, design of the control strategy should be almost trivial:
T
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P, = diag(]0.01,0.01,0.01,0.01]).

A~

1o

= 0,ip=0,0=1,0=

The difficulty arise with growing initial covariance matrix:

i = 0, z’ﬁzo,@:wl:g,

P, = diag([0.01,0.01,0.01, 1)).
Or even worse:

i = 0, z’};:o,azl,ﬁ:g,

P = diag([0.01,0.01,0.01,10]).

The requested value w; = 1.0015.
Conjecture 1. [t is sufficient to consider hyper-state H = [Ea,gg,d), d, P(3,3), P(4,4)].
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