root/applications/dual/vahala/kim/assembDeriv.m @ 1461

Revision 1436, 3.6 kB (checked in by vahalam, 13 years ago)

pridani a uprava lqg s hyperstavem viz clanek Kim2006

Line 
1function [A_k, C_k, pre_k, A_l] = assembDeriv(ksi, iab, ksi0, Q, R, ref_ome, inddq)   
2    a = 0.9898;
3    b = 0.0072;
4    c = 0.0361;   
5    d = 1.0;
6    e = 0.0149;
7    dt = 0.000125;
8
9    Rs = 0.28;
10    Ls = 0.003465;
11    psi = 0.1989;
12    B = 0;   
13    kp = 1.5;
14    pp = 4.0;
15    J = 0.04;
16    Lq = 1.0*Ls;
17    Ld = 0.9*Ls;
18    kpp = kp*pp*pp;
19    kppj = kpp/J;
20   
21    ome = ksi(1);
22    the = ksi(2);
23    P = [ksi(3), ksi(4); ksi(4), ksi(5)];
24    ia = iab(1);
25    ib = iab(2);
26    A_k = zeros(5);
27    A_l = zeros(6);
28       
29   
30    %puvodni matice derivaci
31    if(inddq == 0)
32        %stejne indukcnosti
33        A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0];
34    else
35        %ruzne indukcnosti
36        A = [d, -dt*kppj*(psi*(ia*cos(the) + ib*sin(the)) + (Ld - Lq)*(ia*cos(the) + ib*sin(the))^2 - (Ld - Lq)*(ib*cos(the) - ia*sin(the))^2); dt, 1.0];
37    end
38    C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)];
39   
40    %dalsi matice EKF
41    Pp = A*P*A' + Q;
42    S = C*Pp*C' + R;
43    K = Pp*C'/S;
44    Pnew = (eye(2) - K*C)*Pp;   
45   
46    %derivace zakladnich matic EKF stavu
47%     dAdom = zeros(4);
48    dAdth = [0, e*(ia*sin(the)-ib*cos(the)); 0, 0];
49%     dAdP = zeros(4);
50    dCdom = [0, b*cos(the); 0, b*sin(the)];
51    dCdth = [b*cos(the), -b*ome*sin(the); b*sin(the), b*ome*cos(the)];
52%     dCdP = zeros(4);
53%     dPdomth = zeros(4);
54    dPdPo = [1, 0; 0, 0];
55    dPdPot = [0, 1; 1, 0];
56    dPdPt = [0, 0; 0, 1];
57   
58    %derivace dalsich matic EKF stavu
59%     dPpdom = zeros(4);
60    dPpdth = dAdth*P*A' + A*P*dAdth';
61    dPpdPo = A*dPdPo*A';
62    dPpdPot = A*dPdPot*A';
63    dPpdPt = A*dPdPt*A';
64   
65    dSdom = dCdom*Pp*C' + C*Pp*dCdom';
66    dSdth = dCdth*Pp*C' + C*dPpdth*C' + C*Pp*dCdth';
67    dSdPo = C*dPpdPo*C';
68    dSdPot = C*dPpdPot*C';
69    dSdPt = C*dPpdPt*C';
70   
71    dKdom = Pp*dCdom'/S - Pp*C'/S*dSdom/S;
72    dKdth = dPpdth*C'/S + Pp*dCdth'/S - Pp*C'/S*dSdth/S;
73    dKdPo = dPpdPo*C'/S - Pp*C'/S*dSdPo/S;
74    dKdPot = dPpdPot*C'/S - Pp*C'/S*dSdPot/S;
75    dKdPt = dPpdPt*C'/S - Pp*C'/S*dSdPt/S;
76   
77    dPnewdom = - dKdom*C*Pp - K*dCdom*Pp;
78    dPnewdth = dPpdth - dKdth*C*Pp - K*dCdth*Pp - K*C*dPpdth;
79    dPnewdPo = dPpdPo - dKdPo*C*Pp - K*C*dPpdPo;
80    dPnewdPot = dPpdPot - dKdPot*C*Pp - K*C*dPpdPot;
81    dPnewdPt = dPpdPt - dKdPt*C*Pp - K*C*dPpdPt;
82   
83    A_k(1,1) = d;
84    A_k(1,2) = -e*(ia*cos(the)+ib*sin(the));
85%     A_k(1,3) = 0;
86%     A_k(1,4) = 0;
87%     A_k(1,5) = 0;
88   
89    A_k(2,1) = dt;
90    A_k(2,2) = 1.0;
91%     A_k(2,3) = 0;
92%     A_k(2,4) = 0;
93%     A_k(2,5) = 0;
94   
95    A_k(3,1) = dPnewdom(1,1);
96    A_k(3,2) = dPnewdth(1,1);
97    A_k(3,3) = dPnewdPo(1,1);
98    A_k(3,4) = dPnewdPot(1,1);
99    A_k(3,5) = dPnewdPt(1,1);
100   
101    A_k(4,1) = dPnewdom(1,2);
102    A_k(4,2) = dPnewdth(1,2);
103    A_k(4,3) = dPnewdPo(1,2);
104    A_k(4,4) = dPnewdPot(1,2);
105    A_k(4,5) = dPnewdPt(1,2);
106   
107    A_k(5,1) = dPnewdom(2,2);
108    A_k(5,2) = dPnewdth(2,2);
109    A_k(5,3) = dPnewdPo(2,2);
110    A_k(5,4) = dPnewdPot(2,2);
111    A_k(5,5) = dPnewdPt(2,2);
112   
113    phi = zeros(5,1);
114    phi(1) = d*ksi0(1) + e*(ib*cos(ksi0(2)) - ia*sin(ksi0(2)));
115    phi(2) = ksi0(2) + dt*ksi0(1);
116    phi(3) = Pnew(1,1);
117    phi(4) = Pnew(1,2);
118    phi(5) = Pnew(2,2);
119   
120    A_l(1:5,1:5) = A_k;
121    A_l(1:5,6) = phi - A_k*ksi0;
122    A_l(6,6) = 1.0;
123   
124    %%%
125    A_l(1,2) = 0; %maze clen e*(...), ktery se prevede do B
126    A_l(1:2,6) = [0;dt*ref_ome]; %zmena korekce, protoze je to tam uz linearni, ale posun
127    %%%
128   
129    C_k = zeros(2,5);
130    C_k(1:2,1:2) = C;
131   
132    pre_k = zeros(3,1);   
133    pre_k(1) = Pnew(1,1);
134    pre_k(2) = Pnew(1,2);
135    pre_k(3) = Pnew(2,2);
136    %max x(5) = pi^2/3 ... variance of uniform -pi,pi
137    if(pre_k(3) > pi^2/3)
138        pre_k(3) = pi^2/3;
139    end
140end
Note: See TracBrowser for help on using the browser.