1 | function [loss] = basic_main(T, ref_profile, theta0, simulator, graf, inddq) |
---|
2 | % basic main - hlavni skript |
---|
3 | % clear all; |
---|
4 | % oznaceni: s ... system |
---|
5 | % k ... kalman (EKF) |
---|
6 | % l ... rizeni (LQR) |
---|
7 | |
---|
8 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
9 | %%%%%pouziti SIMULATORU |
---|
10 | % simulator = 1; |
---|
11 | % simulator = 0; |
---|
12 | |
---|
13 | if((simulator == 1)||(simulator == 10)) |
---|
14 | sim_param = pmsm_sim; |
---|
15 | % sim_param(9) = 0; %vypne dead-time |
---|
16 | pmsm_sim(sim_param); |
---|
17 | end |
---|
18 | %%%%% |
---|
19 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
20 | |
---|
21 | % KONSTANTY |
---|
22 | % T = 120000; %horizont |
---|
23 | dt = 0.000125; %casovy krok |
---|
24 | |
---|
25 | % Rs = 0.28; |
---|
26 | % Ls = 0.003465; |
---|
27 | % psipm = 0.1989; |
---|
28 | % B = 0; |
---|
29 | % kp = 1.5; |
---|
30 | % pp = 4.0; |
---|
31 | % J = 0.04; |
---|
32 | |
---|
33 | % Lq = 1.05*Ls; |
---|
34 | % Ld = 0.95*Ls; |
---|
35 | |
---|
36 | a = 0.9898; |
---|
37 | b = 0.0072; |
---|
38 | c = 0.0361; |
---|
39 | d = 1.0; |
---|
40 | e = 0.0149; |
---|
41 | |
---|
42 | Rs = 0.28; |
---|
43 | Ls = 0.003465; |
---|
44 | psi = 0.1989; |
---|
45 | B = 0; |
---|
46 | kp = 1.5; |
---|
47 | pp = 4.0; |
---|
48 | J = 0.04; |
---|
49 | Lq = 1.0*Ls; |
---|
50 | Ld = 0.9*Ls; |
---|
51 | kpp = kp*pp*pp; |
---|
52 | kppj = kpp/J; |
---|
53 | |
---|
54 | % Ls = 0.003465; |
---|
55 | % psipm = 0.1989; |
---|
56 | |
---|
57 | % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; |
---|
58 | % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
---|
59 | % ref_profile = [0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0]; |
---|
60 | % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; |
---|
61 | % ref_profile = [20, 20, 20, 50, 50, 50, -10, -10, -10, 0, 0, 0, 20, 20, 20]; |
---|
62 | |
---|
63 | %kovariance EKF na stavu |
---|
64 | % Q_k = diag([0.001, 0.00001]); |
---|
65 | % R_k = diag([0.015, 0.015]); |
---|
66 | Q_k = diag([0.01, 0.0001]); |
---|
67 | R_k = diag([0.15, 0.15]); |
---|
68 | |
---|
69 | %hodnoty sumu v systemu |
---|
70 | nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); |
---|
71 | nR = diag([0.0006, 0.0006]); |
---|
72 | |
---|
73 | iter_l = 10;% pocet iteraci ve vypoctu rizeni |
---|
74 | |
---|
75 | % B_l = zeros(3,2); |
---|
76 | % B_l = zeros(2,2); |
---|
77 | % B_l(1,1) = c; |
---|
78 | % B_l(2,2) = c; |
---|
79 | |
---|
80 | Q_l = diag([1 0 0]); |
---|
81 | % % Q_l = diag([0 0 1 0 0]); |
---|
82 | r = 0.01; |
---|
83 | R_l = diag([r, r]); |
---|
84 | |
---|
85 | % PROMENNE |
---|
86 | x_s = zeros(4,T); %stav |
---|
87 | y_s = zeros(2,T); %mereni |
---|
88 | x_k = zeros(2,T); %odhad stavu |
---|
89 | % P_k = zeros(2); %kovariance stavu |
---|
90 | u_l = zeros(2,T); %rizeni |
---|
91 | % S_l = zeros(3); %jadro ztraty |
---|
92 | % S_l = zeros(2); |
---|
93 | |
---|
94 | % POCATECNI HODNOTY |
---|
95 | noise = 1; %prepinac sumu |
---|
96 | % noise = 0; |
---|
97 | |
---|
98 | % theta0 = 0; %pocatecni poloha odhadu (nejde pro stav kvuli simulatoru) |
---|
99 | P0 = eye(2); %odhad pocatecni kovariance stavu (apriorni) |
---|
100 | % ST = zeros(3); %koncova ztrata |
---|
101 | ST = ones(3); |
---|
102 | |
---|
103 | |
---|
104 | % INICIALIZACE |
---|
105 | x_k(2,1) = theta0; |
---|
106 | % x_s(3,1) = 5; |
---|
107 | P_k = P0; |
---|
108 | S_l = ST; |
---|
109 | |
---|
110 | ref_ome = zeros(1, T); |
---|
111 | for k = 1:T, |
---|
112 | index = floor(k*dt); |
---|
113 | if(index>0) |
---|
114 | lower = ref_profile(index); |
---|
115 | else |
---|
116 | lower = 0; |
---|
117 | end |
---|
118 | if(index<T*dt) |
---|
119 | upper = ref_profile(index+1); |
---|
120 | else |
---|
121 | upper = 0; |
---|
122 | end |
---|
123 | ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); |
---|
124 | end |
---|
125 | % ref_ome = 0*ones(1, T); |
---|
126 | |
---|
127 | % Derivace pro prvni EKF |
---|
128 | ome = x_k(1,1); |
---|
129 | the = x_k(2,1); |
---|
130 | ia = y_s(1,1); |
---|
131 | ib = y_s(2,1); |
---|
132 | A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; |
---|
133 | C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; |
---|
134 | |
---|
135 | |
---|
136 | ri = 0.0001; |
---|
137 | ai = (1-a*a)/c/c; |
---|
138 | Si = (1 - ai*r + sqrt((ai*r-1)^2+4*r/c/c))/2; |
---|
139 | Li = a*c*Si/(c*c*Si+ri); |
---|
140 | |
---|
141 | A_l = [d,0,0;dt,1,dt;0,0,1]; |
---|
142 | % B_l = zeros(2); |
---|
143 | % % A_l = [a 0 0 0 0; 0 a 0 0 0; 0 0 d 0 (d-1); 0 0 dt 1 dt; 0 0 0 0 1]; |
---|
144 | % % B_l = zeros(5,2); |
---|
145 | % % B_l(1:2,1:2) = [c 0;0 c]; |
---|
146 | |
---|
147 | %PI vektorove |
---|
148 | % kon_pi = 3.0; |
---|
149 | % kon_ii = 0.00375; |
---|
150 | % kon_pu = 20.0; |
---|
151 | % kon_iu = 0.05; |
---|
152 | % sum_iq = 0; |
---|
153 | % sum_ud = 0; |
---|
154 | % sum_uq = 0; |
---|
155 | |
---|
156 | |
---|
157 | |
---|
158 | % HLAVNI SMYCKA |
---|
159 | for t = 1:T-1, |
---|
160 | % EKF |
---|
161 | Pp = A*P_k*A' + Q_k; |
---|
162 | S = C*Pp*C' + R_k; |
---|
163 | K = Pp*C'/S; |
---|
164 | P_k = Pp - K*C*Pp; |
---|
165 | |
---|
166 | xp = zeros(2,1); |
---|
167 | xp(1) = d*x_k(1,t) + e*(y_s(2,t)*cos(x_k(2,t)) - y_s(1,t)*sin(x_k(2,t))); |
---|
168 | xp(2) = x_k(2,t) + dt*x_k(1,t); |
---|
169 | yp = zeros(2,1); |
---|
170 | yp(1) = a*y_s(1,t) + b*x_k(1,t)*sin(x_k(2,t)) + c*u_l(1,t); |
---|
171 | yp(2) = a*y_s(2,t) - b*x_k(1,t)*cos(x_k(2,t)) + c*u_l(2,t); |
---|
172 | |
---|
173 | x_k(:,t+1) = xp + K*(y_s(:,t) - yp); |
---|
174 | |
---|
175 | %!!! |
---|
176 | % tmp = x_k(:,t+1); |
---|
177 | % x_k(:,t+1) = x_s(3:4,t); |
---|
178 | |
---|
179 | % Derivace |
---|
180 | ome = x_k(1,t+1); |
---|
181 | the = x_k(2,t+1); |
---|
182 | ia = y_s(1,t); |
---|
183 | ib = y_s(2,t); |
---|
184 | if(inddq == 0) |
---|
185 | %stejne indukcnosti |
---|
186 | A = [d, -e*(ia*cos(the)+ib*sin(the)); dt, 1.0]; |
---|
187 | else |
---|
188 | %ruzne indukcnosti |
---|
189 | A = [d, -dt*kppj*(psi*(ia*cos(the) + ib*sin(the)) + (Ld - Lq)*(ia*cos(the) + ib*sin(the))^2 - (Ld - Lq)*(ib*cos(the) - ia*sin(the))^2); dt, 1.0]; |
---|
190 | end |
---|
191 | C = [b*sin(the), b*ome*cos(the); -b*cos(the), b*ome*sin(the)]; |
---|
192 | |
---|
193 | % id = ia*cos(the) + ib*sin(the); |
---|
194 | % iq = ib*cos(the) - ia*sin(the); |
---|
195 | |
---|
196 | % LQ |
---|
197 | % phi = zeros(2,1); |
---|
198 | % phi(1) = d*x_k(1,t+1) + e*(y_s(2,t)*cos(x_k(2,t+1)) - y_s(1,t)*sin(x_k(2,t+1))); |
---|
199 | % phi(2) = x_k(2,t+1) + dt*x_k(1,t+1); |
---|
200 | % y = x_k(:,t+1); |
---|
201 | % y(1) = y(1) - ref_ome(t); |
---|
202 | % A_l = zeros(3); |
---|
203 | % A_l(1:2,1:2) = A; |
---|
204 | % A_l = A; |
---|
205 | % A_l(1,2) = 0; |
---|
206 | % A_l(1:2,3) = phi - A*y; |
---|
207 | % A_l(3,3) = 1; |
---|
208 | B_l = [-e*sin(the), e*cos(the); 0, 0; 0,0]; |
---|
209 | y = [(ome-ref_ome(t)); the; ref_ome(t)]; |
---|
210 | % % y = [ia; ib; (ome-ref_ome(t)); the; ref_ome(t)]; |
---|
211 | % % A_l(1, 3) = b*sin(the); |
---|
212 | % % A_l(2, 3) = -b*cos(the); |
---|
213 | % % A_l(1, 5) = b*sin(the); |
---|
214 | % % A_l(2, 5) = -b*cos(the); |
---|
215 | % % A_l(3, 1) = -e*sin(the); |
---|
216 | % % A_l(3, 2) = e*cos(the); |
---|
217 | for i = 1:iter_l |
---|
218 | S_l = A_l'*(S_l - S_l*B_l/(B_l'*S_l*B_l + R_l)*B_l'*S_l)*A_l + Q_l; |
---|
219 | end |
---|
220 | L = (B_l'*S_l*B_l + R_l)\B_l'*S_l*A_l; |
---|
221 | % yref = -L*y;%referencni proudy |
---|
222 | % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c - Li*y_s(:,t); |
---|
223 | |
---|
224 | % sum_iq = sum_iq + ref_ome(t) - ome; |
---|
225 | % ref_iq = kon_pi*(ref_ome(t) - ome) + kon_ii*sum_iq; |
---|
226 | % sum_ud = sum_ud - id; |
---|
227 | % u_d = kon_pu*(-id) + kon_iu*sum_ud; |
---|
228 | % sum_uq = sum_uq + ref_iq - iq; |
---|
229 | % u_q = kon_pu*(ref_iq - iq) + kon_iu*sum_uq; |
---|
230 | % u_d = u_d - Ls*ome*ref_iq; |
---|
231 | % u_q = u_q + psipm*ome; |
---|
232 | % |
---|
233 | % u_l(1, t+1) = u_d*cos(the) - u_q*sin(the); |
---|
234 | % u_l(2, t+1) = u_q*cos(the) + u_d*sin(the); |
---|
235 | % u_l(:,t+1) = b/c*ome*[-sin(the);cos(the)] + yref/c*[sin(the);-cos(the)] - Li*y_s(:,t); |
---|
236 | |
---|
237 | % u_l(:,t+1) = yref/c - Li*y_s(:,t); |
---|
238 | % u_l(:,t+1) = -L*[y;1]; |
---|
239 | u_l(:,t+1) = -L*y + b/c*ome*[-sin(the);cos(the)] - Li*y_s(:,t); |
---|
240 | if u_l(1,t+1) > 100 |
---|
241 | u_l(1,t+1) = 100; |
---|
242 | elseif u_l(1,t+1) < -100 |
---|
243 | u_l(1,t+1) = -100; |
---|
244 | end |
---|
245 | if u_l(2,t+1) > 100 |
---|
246 | u_l(2,t+1) = 100; |
---|
247 | elseif u_l(2,t+1) < -100 |
---|
248 | u_l(2,t+1) = -100; |
---|
249 | end |
---|
250 | % u_l(:,t+1) = 0; |
---|
251 | % Vyvoj systemu |
---|
252 | [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise, simulator); |
---|
253 | |
---|
254 | |
---|
255 | %!!! |
---|
256 | % x_k(:,t+1) = tmp; |
---|
257 | end |
---|
258 | |
---|
259 | if(graf == 1) |
---|
260 | %vykresleni |
---|
261 | cas = (1:T)*dt; |
---|
262 | figure; |
---|
263 | subplot(2,1,1); |
---|
264 | plot(cas,x_k(1,:),cas,x_s(3,:),cas,ref_ome); |
---|
265 | title('Prubeh otacek v case'); |
---|
266 | xlabel('cas [s]'); |
---|
267 | ylabel('otacky [rad/s]'); |
---|
268 | legend('odhad','skutecne','pozadovane'); |
---|
269 | subplot(2,1,2); |
---|
270 | plot(cas,atan2(sin(x_k(2,:)),cos(x_k(2,:))),cas,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); |
---|
271 | title('Prubeh polohy v case'); |
---|
272 | xlabel('cas [s]'); |
---|
273 | ylabel('poloha [rad]'); |
---|
274 | |
---|
275 | figure; |
---|
276 | plot(cas,x_s(3,:)-ref_ome); |
---|
277 | title('Prubeh chyby (skutecne - pozadovane otacky v case)'); |
---|
278 | xlabel('cas [s]'); |
---|
279 | ylabel('chyba [rad/s]'); |
---|
280 | end |
---|
281 | |
---|
282 | loss = sum((x_s(3,:)-ref_ome).^2); |
---|
283 | end |
---|