1 | function [loss] = basic_main_lq4(T, ref_profile, theta0, simulator, graf, inddq) |
---|
2 | % main - hlavni skript >>>>>>>PLNY STAV<<<<<<< |
---|
3 | % clear all; |
---|
4 | % oznaceni: s ... system |
---|
5 | % k ... kalman (EKF) |
---|
6 | % l ... rizeni (LQR) |
---|
7 | |
---|
8 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
9 | %%%%%pouziti SIMULATORU |
---|
10 | % simulator = 1; |
---|
11 | % simulator = 0; |
---|
12 | |
---|
13 | if((simulator == 1)||(simulator == 10)) |
---|
14 | sim_param = pmsm_sim; |
---|
15 | % sim_param(9) = 0; %vypne dead-time |
---|
16 | pmsm_sim(sim_param); |
---|
17 | end |
---|
18 | %%%%% |
---|
19 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
20 | |
---|
21 | % KONSTANTY |
---|
22 | % T = 120000; %horizont |
---|
23 | % T = 40000; |
---|
24 | dt = 0.000125; %casovy krok |
---|
25 | |
---|
26 | % Rs = 0.28; |
---|
27 | % Ls = 0.003465; |
---|
28 | % psipm = 0.1989; |
---|
29 | % B = 0; |
---|
30 | % kp = 1.5; |
---|
31 | % pp = 4.0; |
---|
32 | % J = 0.04; |
---|
33 | |
---|
34 | % Lq = 1.05*Ls; |
---|
35 | % Ld = 0.95*Ls; |
---|
36 | |
---|
37 | a = 0.9898; |
---|
38 | b = 0.0072; |
---|
39 | c = 0.0361; |
---|
40 | d = 1.0; |
---|
41 | e = 0.0149; |
---|
42 | |
---|
43 | Rs = 0.28; |
---|
44 | Ls = 0.003465; |
---|
45 | psi = 0.1989; |
---|
46 | B = 0; |
---|
47 | kp = 1.5; |
---|
48 | pp = 4.0; |
---|
49 | J = 0.04; |
---|
50 | Lq = 1.0*Ls; |
---|
51 | Ld = 0.9*Ls; |
---|
52 | kpp = kp*pp*pp; |
---|
53 | kppj = kpp/J; |
---|
54 | |
---|
55 | % ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0, 0,-3, -6, -3];%/9*200; |
---|
56 | % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
---|
57 | % ref_profile = [0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 0]; |
---|
58 | % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; |
---|
59 | % ref_profile = [20, 20, 20, 50, 50, 50, -10, -10, -10, 0, 0, 0, 20, 20, 20]; |
---|
60 | |
---|
61 | %kovariance EKF na stavu, ktery vytvari hyperstav |
---|
62 | % Q_k = diag([0.01, 0.01, 0.001, 0.00001]); |
---|
63 | % R_k = diag([0.005, 0.005]); |
---|
64 | Q_k = diag([0.1, 0.1, 0.01, 0.0001]); |
---|
65 | R_k = diag([0.05, 0.05]); |
---|
66 | |
---|
67 | %hodnoty sumu v systemu |
---|
68 | nQ = diag([0.0013, 0.0013, 5.0e-6, 1.0e-10]); |
---|
69 | nR = diag([0.0006, 0.0006]); |
---|
70 | |
---|
71 | iter_l = 10;% pocet iteraci ve vypoctu rizeni |
---|
72 | |
---|
73 | B_l = zeros(5,2); |
---|
74 | B_l(1,1) = c; |
---|
75 | B_l(2,2) = c; |
---|
76 | |
---|
77 | Q_l = zeros(5); |
---|
78 | Q_l(3,3) = 1; %ome |
---|
79 | % Q_l(10,10) = 1; %Var ome |
---|
80 | % Q_l(14,14) = 1; %Var the |
---|
81 | % o t Po Pot Pt |
---|
82 | % Q_l = diag([1 0 1 0 0 0]); % asi spravne z teoretickeho hlediska |
---|
83 | % Q_l = diag([1 0 1 0 1 0]); |
---|
84 | % Q_l = diag([1 0 0 0 0 0]); |
---|
85 | r = 0.0001; |
---|
86 | R_l = diag([r, r]); |
---|
87 | |
---|
88 | |
---|
89 | |
---|
90 | % PROMENNE |
---|
91 | x_s = zeros(4,T); %stav |
---|
92 | y_s = zeros(2,T); %mereni |
---|
93 | x_k = zeros(4,T); %odhad hyperstavu |
---|
94 | % P_k = zeros(14); %kovariance hyperstavu |
---|
95 | u_l = zeros(2,T); %rizeni |
---|
96 | % S_l = zeros(15); %jadro ztraty |
---|
97 | % pre_k = zeros(10,1); %predikce stavu |
---|
98 | |
---|
99 | |
---|
100 | % POCATECNI HODNOTY |
---|
101 | noise = 1; %prepinac sumu |
---|
102 | % noise = 0; |
---|
103 | |
---|
104 | % theta0 = 0;%1.5;%1.7; %pocatecni poloha |
---|
105 | % Ps0 = eye(4); %odhad pocatecni kovariance stavu (apriorni) |
---|
106 | Pk0 = eye(4); %pocatecni kovariance stavu |
---|
107 | ST = eye(5); |
---|
108 | |
---|
109 | |
---|
110 | |
---|
111 | % INICIALIZACE |
---|
112 | x_k(4,1) = theta0; |
---|
113 | |
---|
114 | P_k = Pk0; |
---|
115 | |
---|
116 | ref_ome = zeros(1, T); |
---|
117 | for k = 1:T, |
---|
118 | index = floor(k*dt); |
---|
119 | if(index>0) |
---|
120 | lower = ref_profile(index); |
---|
121 | else |
---|
122 | lower = 0; |
---|
123 | end |
---|
124 | if(index<T*dt) |
---|
125 | upper = ref_profile(index+1); |
---|
126 | else |
---|
127 | upper = 0; |
---|
128 | end |
---|
129 | ref_ome(k) = lower + (upper-lower)*dt*(k-index/dt); |
---|
130 | end |
---|
131 | |
---|
132 | % Derivace pro prvni EKF |
---|
133 | ia = x_k(1,1); |
---|
134 | ib = x_k(2,1); |
---|
135 | ome = x_k(3,1); |
---|
136 | the = x_k(4,1); |
---|
137 | A_k = [a, 0, b*sin(the), b*ome*cos(the);... |
---|
138 | 0, a, -b*cos(the), b*ome*sin(the);... |
---|
139 | -e*sin(the), e*cos(the), d, -e*(ib*sin(the)+ia*cos(the));... |
---|
140 | 0, 0, dt, 1.0]; |
---|
141 | C_k = [1, 0, 0, 0;... |
---|
142 | 0, 1, 0, 0]; |
---|
143 | |
---|
144 | %pro LQ - QR rozklad rizeni |
---|
145 | S_l = ST; |
---|
146 | sqQ_l = Q_l;%sqrtm(Q_l); |
---|
147 | sqR_l = sqrtm(R_l); |
---|
148 | |
---|
149 | % HLAVNI SMYCKA |
---|
150 | for t = 1:T-1, |
---|
151 | % EKF |
---|
152 | Pp = A_k*P_k*A_k' + Q_k; |
---|
153 | S = C_k*Pp*C_k' + R_k; |
---|
154 | K = Pp*C_k'/S; |
---|
155 | P_k = Pp - K*C_k*Pp; |
---|
156 | |
---|
157 | xp = zeros(4,1); |
---|
158 | xp(1) = a*x_k(1,t) + b*x_k(3,t)*sin(x_k(4,t)) + c*u_l(1,t); |
---|
159 | xp(2) = a*x_k(2,t) - b*x_k(3,t)*cos(x_k(4,t)) + c*u_l(2,t); |
---|
160 | xp(3) = d*x_k(3,t) + e*(x_k(2,t)*cos(x_k(4,t)) - x_k(1,t)*sin(x_k(4,t))); |
---|
161 | xp(4) = x_k(4,t) + dt*x_k(3,t); |
---|
162 | |
---|
163 | x_k(:,t+1) = xp + K*(y_s(:,t) - xp(1:2)); |
---|
164 | |
---|
165 | |
---|
166 | % Derivace |
---|
167 | ia = x_k(1,t+1); |
---|
168 | ib = x_k(2,t+1); |
---|
169 | ome = x_k(3,t+1); |
---|
170 | the = x_k(4,t+1); |
---|
171 | %stejne indukcnosti |
---|
172 | if(inddq == 0) |
---|
173 | A_k = [a, 0, b*sin(the), b*ome*cos(the);... |
---|
174 | 0, a, -b*cos(the), b*ome*sin(the);... |
---|
175 | -e*sin(the), e*cos(the), d, -e*(ib*sin(the)+ia*cos(the));... |
---|
176 | 0, 0, dt, 1.0]; |
---|
177 | %ruzne indukcnosti |
---|
178 | else |
---|
179 | A_k = [[ (Lq - Rs*dt*sin(the)^2)/Lq - (dt*ome*sin(the)*Lq^2*cos(the) + Rs*dt*Lq*cos(the)^2)/(Ld*Lq) + (Ld*dt*ome*cos(the)*sin(the))/Lq, (dt*(Ld - Lq)*(- Lq*ome*cos(the)^2 + Rs*cos(the)*sin(the) + Ld*ome*sin(the)^2))/(Ld*Lq), dt*cos(the)*(ia*sin(the) - ib*cos(the) + (Lq*(ib*cos(the) - ia*sin(the)))/Ld) + dt*sin(the)*(psi/Lq - ia*cos(the) - ib*sin(the) + (Ld*(ia*cos(the) + ib*sin(the)))/Lq), (dt*(ome*psi*cos(the) + Rs*ib*cos(2*the) - Rs*ia*sin(2*the)))/Lq + (Ld*dt*(ia*ome*cos(2*the) + ib*ome*sin(2*the)))/Lq - (dt*(Lq^2*ia*ome*cos(2*the) + Lq^2*ib*ome*sin(2*the) + Lq*Rs*ib*cos(2*the) - Lq*Rs*ia*sin(2*the)))/(Ld*Lq)];... |
---|
180 | [ (dt*(Ld - Lq)*(- Ld*ome*cos(the)^2 + Rs*cos(the)*sin(the) + Lq*ome*sin(the)^2))/(Ld*Lq), (Lq - Rs*dt*cos(the)^2)/Lq - (Lq*Rs*dt*sin(the)^2 - Lq^2*dt*ome*cos(the)*sin(the))/(Ld*Lq) - (Ld*dt*ome*cos(the)*sin(the))/Lq, (dt*(Lq*ia - psi*cos(the)))/Lq + (dt*((Lq^2*ia*cos(2*the))/2 - (Lq^2*ia)/2 + (Lq^2*ib*sin(2*the))/2))/(Ld*Lq) - (Ld*dt*(ia/2 + (ia*cos(2*the))/2 + (ib*sin(2*the))/2))/Lq, (dt*ome*psi*sin(the) - Rs*dt*ia*(2*sin(the)^2 - 1) + Rs*dt*ib*sin(2*the))/Lq + (Ld*(dt*ib*ome*(2*sin(the)^2 - 1) + dt*ia*ome*sin(2*the)))/Lq - (Lq*Rs*dt*ib*sin(2*the) + Lq^2*dt*ib*ome*(2*sin(the)^2 - 1) + Lq^2*dt*ia*ome*sin(2*the) - Lq*Rs*dt*ia*(2*sin(the)^2 - 1))/(Ld*Lq)];... |
---|
181 | [ -dt*kppj*(psi*sin(the) - cos(the)*(Ld - Lq)*(ib*cos(the) - ia*sin(the)) + sin(the)*(Ld - Lq)*(ia*cos(the) + ib*sin(the))), dt*kppj*(psi*cos(the) + cos(the)*(Ld - Lq)*(ia*cos(the) + ib*sin(the)) + sin(the)*(Ld - Lq)*(ib*cos(the) - ia*sin(the))), 1.0, -dt*kppj*(psi*(ia*cos(the) + ib*sin(the)) + (Ld - Lq)*(ia*cos(the) + ib*sin(the))^2 - (Ld - Lq)*(ib*cos(the) - ia*sin(the))^2)];... |
---|
182 | [ 0.0, 0.0, dt, 1.0]]; |
---|
183 | end |
---|
184 | %korekce nechavam stejne, ale muze to delat problemy |
---|
185 | A_l = zeros(5); |
---|
186 | A_l(1:4,1:4) = A_k; |
---|
187 | A_l(1,5) = b*sin(the)*ref_ome(t) - b*ome*the*cos(the); |
---|
188 | A_l(2,5) = -b*cos(the)*ref_ome(t) - b*ome*the*sin(the); |
---|
189 | A_l(3,5) = (d - 1)*ref_ome(t) + e*the*(ia*cos(the)+ib*sin(the)); |
---|
190 | A_l(4,5) = dt*ref_ome(t); |
---|
191 | A_l(5,5) = 1; |
---|
192 | |
---|
193 | % LQ |
---|
194 | %1 - Riccati |
---|
195 | % S_l = ST; |
---|
196 | % for i = 1:iter_l |
---|
197 | % S_l = A_l'*(S_l - S_l*B_l/(B_l'*S_l*B_l + R_l)*B_l'*S_l)*A_l + Q_l; |
---|
198 | % end |
---|
199 | % L = (B_l'*S_l*B_l + R_l)\B_l'*S_l*A_l; |
---|
200 | |
---|
201 | % 2 - QR rozklad |
---|
202 | S_l = sqrtm(ST); |
---|
203 | for i = 1:iter_l |
---|
204 | preQR = [sqQ_l*B_l, sqQ_l*A_l;... |
---|
205 | sqR_l, zeros(2,5);... |
---|
206 | S_l*B_l, S_l*A_l]; |
---|
207 | [~, postR] = qr(preQR); |
---|
208 | AA = postR(1:2,1:2); |
---|
209 | BB = postR(1:2,3:end); |
---|
210 | S_l = postR(3:7,3:end); |
---|
211 | end |
---|
212 | L = AA\BB; |
---|
213 | % % sum(L(:)) |
---|
214 | %%%% |
---|
215 | |
---|
216 | y = x_k(:,t+1); |
---|
217 | y(3) = y(3) - ref_ome(t); |
---|
218 | u_l(:,t+1) = -L*[y;1]; |
---|
219 | |
---|
220 | if u_l(1,t+1) > 100 |
---|
221 | u_l(1,t+1) = 100; |
---|
222 | elseif u_l(1,t+1) < -100 |
---|
223 | u_l(1,t+1) = -100; |
---|
224 | end |
---|
225 | if u_l(2,t+1) > 100 |
---|
226 | u_l(2,t+1) = 100; |
---|
227 | elseif u_l(2,t+1) < -100 |
---|
228 | u_l(2,t+1) = -100; |
---|
229 | end |
---|
230 | |
---|
231 | % Vyvoj systemu |
---|
232 | [x_s(:,t+1), y_s(:,t+1)] = evolSys(x_s(:,t), u_l(:,t+1), nQ, nR, noise, simulator); |
---|
233 | end |
---|
234 | |
---|
235 | if(graf == 1) |
---|
236 | %vykresleni |
---|
237 | cas = (1:T)*dt; |
---|
238 | figure; |
---|
239 | subplot(2,1,1); |
---|
240 | plot(cas,x_k(3,:),cas,x_s(3,:),cas,ref_ome); |
---|
241 | title('Prubeh otacek v case'); |
---|
242 | xlabel('cas [s]'); |
---|
243 | ylabel('otacky [rad/s]'); |
---|
244 | legend('odhad','skutecne','pozadovane'); |
---|
245 | subplot(2,1,2); |
---|
246 | plot(cas,atan2(sin(x_k(4,:)),cos(x_k(4,:))),cas,atan2(sin(x_s(4,:)),cos(x_s(4,:)))); |
---|
247 | title('Prubeh polohy v case'); |
---|
248 | xlabel('cas [s]'); |
---|
249 | ylabel('poloha [rad]'); |
---|
250 | |
---|
251 | % figure; |
---|
252 | % subplot(2,1,1); |
---|
253 | % plot(cas,x_k(1,:),cas,x_s(1,:)); |
---|
254 | % subplot(2,1,2); |
---|
255 | % plot(cas,x_k(2,:),cas,x_s(2,:)); |
---|
256 | |
---|
257 | figure; |
---|
258 | plot(cas,x_s(3,:)-ref_ome); |
---|
259 | title('Prubeh chyby (skutecne - pozadovane otacky v case)'); |
---|
260 | xlabel('cas [s]'); |
---|
261 | ylabel('chyba [rad/s]'); |
---|
262 | end |
---|
263 | |
---|
264 | loss = sum((x_s(3,:)-ref_ome).^2); |
---|
265 | end |
---|