1 | %simulator PMSM for PCRB, choice: Ls/Ldq & correct/incorrect expectation |
---|
2 | clear all; |
---|
3 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
4 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
5 | |
---|
6 | %for experiments |
---|
7 | %ctrl.> 2,5,9,10 |
---|
8 | %model> {1},{7},{4,6,10},{12} - {eq.} sort from worst |
---|
9 | |
---|
10 | % settings |
---|
11 | % ON/OFF MODEL IS CORR. E INDUCT. L |
---|
12 | model(1) = 1; % alpha-beta nE Ls |
---|
13 | model(2) = 0; % d-q nE Ls |
---|
14 | model(3) = 0; % 5sc nE Ls |
---|
15 | |
---|
16 | model(4) = 0; % alpha-beta E Ls |
---|
17 | model(5) = 0; % d-q E Ls |
---|
18 | model(6) = 0; % 5sc E Ls |
---|
19 | |
---|
20 | model(7) = 1; % alpha-beta nE Ldq |
---|
21 | model(8) = 0; % d-q nE Ldq |
---|
22 | model(9) = 0; % 5sc nE Ldq |
---|
23 | |
---|
24 | model(10) = 0; % alpha-beta E Ldq |
---|
25 | model(11) = 0; % d-q E Ldq |
---|
26 | model(12) = 0; % 5sc E Ldq |
---|
27 | |
---|
28 | % CONTROL |
---|
29 | % 1 - ome = ref_ome, the = integral(ome), ial = ibe = 0 |
---|
30 | % 2 - PI control |
---|
31 | % 3 - PI + injection (sin -> dq) |
---|
32 | % 4 - PI + injection (rect. -> dq) |
---|
33 | % 5 - PI + injection (const. -> ud) *J4 ~ 3e-6 for all exc. dq |
---|
34 | % 6 - PI + rnd error (ref_ome) *J4: dq bad; ab,5sc Ls ~ 4e-4; ab,5sc Ldq ~5e-6 |
---|
35 | % 7 - PI + injection (sin -> al-be) |
---|
36 | % 8 - PI + injection (rect. -> al-be) |
---|
37 | % 9 - PI + bicrit. (sign) *J4 ~ 1e-3 for all exc. dq |
---|
38 | % 10 - PI + rnd bicrit. selection (5) |
---|
39 | |
---|
40 | % control = 2; |
---|
41 | % control = 5; |
---|
42 | % control = 8; %high frekq. |
---|
43 | % control = 9; |
---|
44 | control = 10; |
---|
45 | % param. amp*phi(injom*dt*t) //phi = sin,cos,sign(sin),sing(cos) |
---|
46 | |
---|
47 | amp = 10.0; |
---|
48 | injom = 5000; |
---|
49 | |
---|
50 | %cov Q, R matrices |
---|
51 | % %noise |
---|
52 | % Q = diag([0.0013 0.0013 5.0e-6 1.0e-10]); |
---|
53 | % R = diag([0.0006 0.0006]); |
---|
54 | % %EKF |
---|
55 | % Q = diag([0.1 0.1 0.1 0.001]); |
---|
56 | % R = diag([0.05 0.05]); |
---|
57 | % %test |
---|
58 | Q = diag([0.1 0.1 0.1 10]); |
---|
59 | R = diag([0.5 0.5]); |
---|
60 | |
---|
61 | %horizont |
---|
62 | T = 120000; |
---|
63 | |
---|
64 | %reference signal |
---|
65 | % ref_profile = [1, 10, 50, 200, 200, 30, 0, 0, -1, -10, -50, -200, -200, -30, 0]; |
---|
66 | ref_profile = [0, -1, 3, 6, 9, 6, 3, 0, 0, 0, 0, 0,0,-3, -6, -3]; |
---|
67 | % ref_profile = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
---|
68 | % ref_profile = ones(1,16); |
---|
69 | |
---|
70 | [var_ome, var_th, var_th2] = fpcrb(model, control, amp, injom, Q, R, T, ref_profile); |
---|
71 | |
---|
72 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
73 | % plot |
---|
74 | |
---|
75 | %axis |
---|
76 | xax = 1:T-1; |
---|
77 | dt = 0.000125; |
---|
78 | timex = (xax)*dt; |
---|
79 | cmp = lines(sum(model)); |
---|
80 | for i=1:sum(model) |
---|
81 | figure(1); |
---|
82 | hold on; |
---|
83 | plot(timex, var_ome(xax,i),'Color',cmp(i,:)); |
---|
84 | |
---|
85 | figure(2); |
---|
86 | hold on; |
---|
87 | plot(timex, var_th(xax,i),'Color',cmp(i,:)); |
---|
88 | |
---|
89 | figure(3); |
---|
90 | hold on; |
---|
91 | plot(timex, var_th2(xax,i),'Color',cmp(i,:)); |
---|
92 | end |
---|
93 | |
---|
94 | sound(chirp(0:0.001:2,0,1,150)); |
---|