itload('iter_cond_debug3.it'); ndat = 1000; % check if true! prop_mean=zeros(3,40); prop_var=zeros(3,40); for it=0:39 si = num2str(it); eval(['eff_w(it+1) = 1/(w' si '''*w' si ');']); eval(['prop_mean(1:3,it+1) = Mpred_mean' si ';']); eval(['prop_var(1:3,it+1) = Mpred_var' si '(1:3);']); end figure(2) subplot(1,2,1) hold off plot(eff_w) xlabel('iteration'); title('Effective sample size'); %title('Non-normalized importance weights') subplot(1,2,2); hold off plot(prop_mean'); hold on plot(prop_mean'+2*sqrt(prop_var'),'.'); plot(prop_mean'-2*sqrt(prop_var'),'.'); %plot(ones(size(prop_mean,2),1)*[3 2],'--') xlabel('iteration'); title('Mean value of the joint merger $\tilde{f}(\bm{x})$'); % itload('../merger_iter_test.it'); % XG = reshape(Grid(1,:),Npoints,Npoints); % YG = reshape(Grid(2,:),Npoints,Npoints); % % figure(2); % M1 = reshape(exp(Res1),Npoints,Npoints); % contour(XG,YG,M1,7); % % figure(3); % hold off % mm = max(max(Res2)); % for i=1:size(Res2,1) % M2 = reshape(Res2(i,:),Npoints,Npoints); % contour(XG,YG,M2,[0:mm/7:mm]); % hold on % end