| 1 | #ifndef PMSM_H |
|---|
| 2 | #define PMSM_H |
|---|
| 3 | |
|---|
| 4 | #include <stat/libFN.h> |
|---|
| 5 | |
|---|
| 6 | /*! \defgroup PMSM |
|---|
| 7 | @{ |
|---|
| 8 | */ |
|---|
| 9 | |
|---|
| 10 | using namespace bdm; |
|---|
| 11 | |
|---|
| 12 | //TODO hardcoded RVs!!! |
|---|
| 13 | RV rx ( "{ia ib om th }"); |
|---|
| 14 | RV ru ( "{ua ub }"); |
|---|
| 15 | RV ry ( "{oia oib }"); |
|---|
| 16 | |
|---|
| 17 | // class uipmsm : public uibase{ |
|---|
| 18 | // double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
|---|
| 19 | // }; |
|---|
| 20 | |
|---|
| 21 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$ |
|---|
| 22 | class IMpmsm : public diffbifn { |
|---|
| 23 | protected: |
|---|
| 24 | double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
|---|
| 25 | |
|---|
| 26 | public: |
|---|
| 27 | IMpmsm() :diffbifn ( ) {dimy=4; dimx = 4; dimu=2;}; |
|---|
| 28 | //! Set mechanical and electrical variables |
|---|
| 29 | virtual void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0;} |
|---|
| 30 | |
|---|
| 31 | void modelpwm(const vec &x0, const vec u0, double &ua, double &ub){ |
|---|
| 32 | /* ua=u0[0]; |
|---|
| 33 | ub=u0[1]; |
|---|
| 34 | return;*/ |
|---|
| 35 | double sq3=sqrt ( 3.0 ); |
|---|
| 36 | double i1=x0(0); |
|---|
| 37 | double i2=0.5* ( -i1+sq3*x0[1] ); |
|---|
| 38 | double i3=0.5* ( -i1-sq3*x0[1] ); |
|---|
| 39 | double u1=u0(0); |
|---|
| 40 | double u2=0.5* ( -u1+sq3*u0(1) ); |
|---|
| 41 | double u3=0.5* ( -u1-sq3*u0(1) ); |
|---|
| 42 | |
|---|
| 43 | double du1=1.4* ( double ( i1>0.3 ) - double ( i1<-0.3 ) ) +0.2*i1; |
|---|
| 44 | double du2=1.4* ( double ( i2>0.3 ) - double ( i2<-0.3 ) ) +0.2*i2; |
|---|
| 45 | double du3=1.4* ( double ( i3>0.3 ) - double ( i3<-0.3 ) ) +0.2*i3; |
|---|
| 46 | ua = ( 2.0* ( u1-du1 )- ( u2-du2 )- ( u3-du3 ) ) /3.0; |
|---|
| 47 | ub = ( ( u2-du2 )- ( u3-du3 ) ) /sq3; |
|---|
| 48 | } |
|---|
| 49 | |
|---|
| 50 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 51 | // last state |
|---|
| 52 | const double &iam = x0 ( 0 ); |
|---|
| 53 | const double &ibm = x0 ( 1 ); |
|---|
| 54 | const double &omm = x0 ( 2 ); |
|---|
| 55 | const double &thm = x0 ( 3 ); |
|---|
| 56 | double uam; |
|---|
| 57 | double ubm; |
|---|
| 58 | |
|---|
| 59 | modelpwm(x0,u0,uam,ubm); |
|---|
| 60 | |
|---|
| 61 | vec xk( 4 ); |
|---|
| 62 | //ia |
|---|
| 63 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + uam*dt/Ls; |
|---|
| 64 | //ib |
|---|
| 65 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + ubm*dt/Ls; |
|---|
| 66 | //om |
|---|
| 67 | xk ( 2 ) = omm + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ) - p/J*dt*Mz; |
|---|
| 68 | //th |
|---|
| 69 | xk ( 3 ) = thm + omm*dt; // <0..2pi> |
|---|
| 70 | if ( xk ( 3 ) >pi ) xk ( 3 )-=2*pi; |
|---|
| 71 | if ( xk ( 3 ) <-pi ) xk ( 3 ) +=2*pi; |
|---|
| 72 | return xk; |
|---|
| 73 | } |
|---|
| 74 | |
|---|
| 75 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 76 | const double &iam = x0 ( 0 ); |
|---|
| 77 | const double &ibm = x0 ( 1 ); |
|---|
| 78 | const double &omm = x0 ( 2 ); |
|---|
| 79 | const double &thm = x0 ( 3 ); |
|---|
| 80 | // d ia |
|---|
| 81 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
|---|
| 82 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
|---|
| 83 | // d ib |
|---|
| 84 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
|---|
| 85 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
|---|
| 86 | // d om |
|---|
| 87 | A ( 2,0 ) = kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
|---|
| 88 | A ( 2,1 ) = kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
|---|
| 89 | A ( 2,2 ) = 1.0; |
|---|
| 90 | A ( 2,3 ) = kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
|---|
| 91 | // d th |
|---|
| 92 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
|---|
| 93 | } |
|---|
| 94 | |
|---|
| 95 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
|---|
| 96 | }; |
|---|
| 97 | |
|---|
| 98 | |
|---|
| 99 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$ |
|---|
| 100 | class IMpmsm2o : public IMpmsm { |
|---|
| 101 | protected: |
|---|
| 102 | // double Rs, Ls, dt, Ypm, kp, p, J, Mz; |
|---|
| 103 | //! store first derivatives for the use in second derivatives |
|---|
| 104 | double dia, dib, dom, dth; |
|---|
| 105 | //! d2t = dt^2/2, cth = cos(th), sth=sin(th) |
|---|
| 106 | double d2t, cth, sth; |
|---|
| 107 | double iam, ibm, omm, thm, uam, ubm; |
|---|
| 108 | public: |
|---|
| 109 | IMpmsm2o() :IMpmsm () {}; |
|---|
| 110 | //! Set mechanical and electrical variables |
|---|
| 111 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0; d2t=dt*dt/2;} |
|---|
| 112 | |
|---|
| 113 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 114 | // last state |
|---|
| 115 | iam = x0 ( 0 ); |
|---|
| 116 | ibm = x0 ( 1 ); |
|---|
| 117 | omm = x0 ( 2 ); |
|---|
| 118 | thm = x0 ( 3 ); |
|---|
| 119 | uam = u0 ( 0 ); |
|---|
| 120 | ubm = u0 ( 1 ); |
|---|
| 121 | |
|---|
| 122 | cth = cos(thm); |
|---|
| 123 | sth = sin(thm); |
|---|
| 124 | |
|---|
| 125 | dia = (- Rs/Ls*iam + Ypm/Ls*omm * sth + uam/Ls); |
|---|
| 126 | dib = (- Rs/Ls*ibm - Ypm/Ls*omm * cth + ubm/Ls); |
|---|
| 127 | dom = kp*p*p * Ypm/J *( ibm * cth-iam * sth ) - p/J*Mz; |
|---|
| 128 | dth = omm; |
|---|
| 129 | |
|---|
| 130 | vec xk=zeros ( 4 ); |
|---|
| 131 | xk ( 0 ) = iam + dt*dia;// +d2t*d2ia; |
|---|
| 132 | xk ( 1 ) = ibm + dt*dib;// +d2t*d2ib; |
|---|
| 133 | xk ( 2 ) = omm +dt*dom;// +d2t*d2om; |
|---|
| 134 | xk ( 3 ) = thm + dt*dth;// +d2t*dom; // <0..2pi> |
|---|
| 135 | |
|---|
| 136 | if ( xk ( 3 ) >pi ) xk ( 3 )-=2*pi; |
|---|
| 137 | if ( xk ( 3 ) <-pi ) xk ( 3 ) +=2*pi; |
|---|
| 138 | return xk; |
|---|
| 139 | } |
|---|
| 140 | |
|---|
| 141 | //! eval 2nd order Taylor expansion, MUST be used only as a follow up AFTER eval()!! |
|---|
| 142 | vec eval2o(const vec &du){ |
|---|
| 143 | double dua = du ( 0 )/dt; |
|---|
| 144 | double dub = du ( 1 )/dt; |
|---|
| 145 | |
|---|
| 146 | vec xth2o(4); |
|---|
| 147 | xth2o(0) = (- Rs/Ls*dia + Ypm/Ls*(dom * sth + omm*cth) + dua/Ls); |
|---|
| 148 | xth2o(1) = (- Rs/Ls*dib - Ypm/Ls*(dom * cth - omm*sth) + dub/Ls); |
|---|
| 149 | xth2o(2) = kp*p*p * Ypm/J *( dib * cth-ibm*sth - (dia * sth + iam *cth)); |
|---|
| 150 | xth2o(3) = dom; |
|---|
| 151 | // multiply by dt^2/2 |
|---|
| 152 | xth2o*=d2t/2; |
|---|
| 153 | return xth2o; |
|---|
| 154 | } |
|---|
| 155 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 156 | iam = x0 ( 0 ); |
|---|
| 157 | ibm = x0 ( 1 ); |
|---|
| 158 | omm = x0 ( 2 ); |
|---|
| 159 | thm = x0 ( 3 ); |
|---|
| 160 | // d ia |
|---|
| 161 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
|---|
| 162 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
|---|
| 163 | // d ib |
|---|
| 164 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
|---|
| 165 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
|---|
| 166 | // d om |
|---|
| 167 | A ( 2,0 ) = kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
|---|
| 168 | A ( 2,1 ) = kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
|---|
| 169 | A ( 2,2 ) = 1.0; |
|---|
| 170 | A ( 2,3 ) = kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
|---|
| 171 | // d th |
|---|
| 172 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
|---|
| 173 | // FOR d2t*dom!!!!!!!!! |
|---|
| 174 | /* A ( 3,0 ) = dt* kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
|---|
| 175 | A ( 3,1 ) = dt* kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
|---|
| 176 | A ( 3,2 ) = dt; |
|---|
| 177 | A ( 3,3 ) = 1.0 + dt* kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) );*/ |
|---|
| 178 | } |
|---|
| 179 | |
|---|
| 180 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
|---|
| 181 | |
|---|
| 182 | }; |
|---|
| 183 | |
|---|
| 184 | //! State evolution model for a PMSM drive and its derivative with respect to \f$x\f$, equation for \f$\omega\f$ is omitted.$ |
|---|
| 185 | class IMpmsmStat : public IMpmsm { |
|---|
| 186 | public: |
|---|
| 187 | IMpmsmStat() :IMpmsm() {}; |
|---|
| 188 | //! Set mechanical and electrical variables |
|---|
| 189 | void set_parameters ( double Rs0, double Ls0, double dt0, double Ypm0, double kp0, double p0, double J0, double Mz0 ) {Rs=Rs0; Ls=Ls0; dt=dt0; Ypm=Ypm0; kp=kp0; p=p0; J=J0; Mz=Mz0;} |
|---|
| 190 | |
|---|
| 191 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 192 | // last state |
|---|
| 193 | double iam = x0 ( 0 ); |
|---|
| 194 | double ibm = x0 ( 1 ); |
|---|
| 195 | double omm = x0 ( 2 ); |
|---|
| 196 | double thm = x0 ( 3 ); |
|---|
| 197 | double uam = u0 ( 0 ); |
|---|
| 198 | double ubm = u0 ( 1 ); |
|---|
| 199 | |
|---|
| 200 | vec xk=zeros ( 4 ); |
|---|
| 201 | //ia |
|---|
| 202 | xk ( 0 ) = ( 1.0- Rs/Ls*dt ) * iam + Ypm/Ls*dt*omm * sin ( thm ) + uam*dt/Ls; |
|---|
| 203 | //ib |
|---|
| 204 | xk ( 1 ) = ( 1.0- Rs/Ls*dt ) * ibm - Ypm/Ls*dt*omm * cos ( thm ) + ubm*dt/Ls; |
|---|
| 205 | //om |
|---|
| 206 | xk ( 2 ) = omm - p/J*dt*Mz;// + kp*p*p * Ypm/J*dt* ( ibm * cos ( thm )-iam * sin ( thm ) ); |
|---|
| 207 | //th |
|---|
| 208 | xk ( 3 ) = rem(thm + omm*dt,2*pi); // <0..2pi> |
|---|
| 209 | return xk; |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 213 | // double iam = x0 ( 0 ); |
|---|
| 214 | // double ibm = x0 ( 1 ); |
|---|
| 215 | double omm = x0 ( 2 ); |
|---|
| 216 | double thm = x0 ( 3 ); |
|---|
| 217 | // d ia |
|---|
| 218 | A ( 0,0 ) = ( 1.0- Rs/Ls*dt ); A ( 0,1 ) = 0.0; |
|---|
| 219 | A ( 0,2 ) = Ypm/Ls*dt* sin ( thm ); A ( 0,3 ) = Ypm/Ls*dt*omm * ( cos ( thm ) ); |
|---|
| 220 | // d ib |
|---|
| 221 | A ( 1,0 ) = 0.0 ; A ( 1,1 ) = ( 1.0- Rs/Ls*dt ); |
|---|
| 222 | A ( 1,2 ) = -Ypm/Ls*dt* cos ( thm ); A ( 1,3 ) = Ypm/Ls*dt*omm * ( sin ( thm ) ); |
|---|
| 223 | // d om |
|---|
| 224 | A ( 2,0 ) = 0.0;//kp*p*p * Ypm/J*dt* ( - sin ( thm ) ); |
|---|
| 225 | A ( 2,1 ) = 0.0;//kp*p*p * Ypm/J*dt* ( cos ( thm ) ); |
|---|
| 226 | A ( 2,2 ) = 1.0; |
|---|
| 227 | A ( 2,3 ) = 0.0;//kp*p*p * Ypm/J*dt* ( -ibm * sin ( thm )-iam * cos ( thm ) ); |
|---|
| 228 | // d th |
|---|
| 229 | A ( 3,0 ) = 0.0; A ( 3,1 ) = 0.0; A ( 3,2 ) = dt; A ( 3,3 ) = 1.0; |
|---|
| 230 | } |
|---|
| 231 | |
|---|
| 232 | void dfdu_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) {it_error ( "not needed" );}; |
|---|
| 233 | |
|---|
| 234 | }; |
|---|
| 235 | |
|---|
| 236 | //! State for PMSM with unknown Mz |
|---|
| 237 | class IMpmsmMz: public IMpmsm{ |
|---|
| 238 | public: |
|---|
| 239 | IMpmsmMz() {dimy=5; dimx = 5; dimu=2;}; |
|---|
| 240 | //! extend eval by Mz |
|---|
| 241 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 242 | vec x(4); |
|---|
| 243 | Mz = x0(4); //last of the state is Mz |
|---|
| 244 | |
|---|
| 245 | //teh first 4 states are same as before (given that Mz is set) |
|---|
| 246 | x=IMpmsm::eval(x0,u0); // including model of drops! |
|---|
| 247 | return concat(x,Mz); |
|---|
| 248 | } |
|---|
| 249 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 250 | //call initial |
|---|
| 251 | if (full) A.clear(); |
|---|
| 252 | IMpmsm::dfdx_cond(x0,u0,A,full); |
|---|
| 253 | A(2,4)=- p/J*dt; |
|---|
| 254 | A(4,4)=1.0; |
|---|
| 255 | } |
|---|
| 256 | }; |
|---|
| 257 | |
|---|
| 258 | //! State for PMSM with unknown Mz |
|---|
| 259 | class IMpmsmStatMz: public IMpmsmStat{ |
|---|
| 260 | public: |
|---|
| 261 | IMpmsmStatMz() {dimy=5; dimx = 5; dimu=2;}; |
|---|
| 262 | //! extend eval by Mz |
|---|
| 263 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 264 | vec x(4); |
|---|
| 265 | Mz = x0(4); //last of the state is Mz |
|---|
| 266 | |
|---|
| 267 | //teh first 4 states are same as before (given that Mz is set) |
|---|
| 268 | x=IMpmsmStat::eval(x0,u0); // including model of drops! |
|---|
| 269 | return concat(x,Mz); |
|---|
| 270 | } |
|---|
| 271 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 272 | //call initial |
|---|
| 273 | if (full) A.clear(); |
|---|
| 274 | IMpmsmStat::dfdx_cond(x0,u0,A,full); |
|---|
| 275 | A(2,4)=- p/J*dt; |
|---|
| 276 | A(4,4)=1.0; |
|---|
| 277 | } |
|---|
| 278 | }; |
|---|
| 279 | |
|---|
| 280 | |
|---|
| 281 | //! Observation model for PMSM drive and its derivative with respect to \f$x\f$ |
|---|
| 282 | class OMpmsm: public diffbifn { |
|---|
| 283 | public: |
|---|
| 284 | OMpmsm() :diffbifn () {dimy=2;dimx=4;dimu=2;}; |
|---|
| 285 | |
|---|
| 286 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 287 | vec y ( 2 ); |
|---|
| 288 | y ( 0 ) = x0 ( 0 ); |
|---|
| 289 | y ( 1 ) = x0 ( 1 ); |
|---|
| 290 | return y; |
|---|
| 291 | } |
|---|
| 292 | |
|---|
| 293 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 294 | A.clear(); |
|---|
| 295 | A ( 0,0 ) = 1.0; |
|---|
| 296 | A ( 1,1 ) = 1.0; |
|---|
| 297 | } |
|---|
| 298 | }; |
|---|
| 299 | |
|---|
| 300 | //! Observation model for PMSM drive and its derivative with respect to \f$x\f$ for full vector of observations |
|---|
| 301 | class OMpmsm4: public diffbifn { |
|---|
| 302 | public: |
|---|
| 303 | OMpmsm4() :diffbifn () {dimy=4;dimx=4;dimu=2;}; |
|---|
| 304 | |
|---|
| 305 | vec eval ( const vec &x0, const vec &u0 ) { |
|---|
| 306 | vec y ( 4 ); |
|---|
| 307 | y = x0 ; |
|---|
| 308 | return y; |
|---|
| 309 | } |
|---|
| 310 | |
|---|
| 311 | void dfdx_cond ( const vec &x0, const vec &u0, mat &A, bool full=true ) { |
|---|
| 312 | if (full) A=eye(4); |
|---|
| 313 | } |
|---|
| 314 | }; |
|---|
| 315 | |
|---|
| 316 | /*!@}*/ |
|---|
| 317 | #endif //PMSM_H |
|---|