/*!
\file
\brief DataSource for experiments with realistic simulator of the PMSM model
\author Vaclav Smidl.
-----------------------------------
BDM++ - C++ library for Bayesian Decision Making under Uncertainty
Using IT++ for numerical operations
-----------------------------------
*/
#ifndef PMSM_DS
#define PMSM_DS
#include
#include
#include "simulator_zdenek/simulator.h"
#include "pmsm.h"
using namespace bdm;
//! Simulator of PMSM machine with predefined profile on omega
class pmsmDS : public DS
{
LOG_LEVEL(pmsmDS,logvoltage);
protected:
//! indices of logged variables
int L_x, L_ou, L_oy, L_iu, L_optu;
//! Setpoints of omega in timespans given by dt_prof
vec profileWw;
//! Setpoints of Mz in timespans given by dt_prof
vec profileMz;
//! time-step for profiles
double dt_prof;
//! Number of miliseconds per discrete time step
int Dt;
public:
double x[9];
double KalmanObs[6];
//! Constructor with fixed sampling period
pmsmDS () : DS()
{
Dt=125;
Drv=RV ( "{o_ua o_ub o_ia o_ib t_ua t_ub o_om o_th Mz }" );
dtsize = Drv._dsize();
pmsmsim_fill_xy(x,KalmanObs);
}
void set_parameters ( double Rs0, double Ls0, double Fmag0, double Bf0, double p0, double kp0, double J0, double Uc0, double DT0, double dt0 )
{
pmsmsim_set_parameters ( Rs0, Ls0, Fmag0, Bf0, p0, kp0, J0, Uc0, DT0, dt0 );
}
void getdata ( vec &dt ) const
{
dt.set_subvector(0,vec ( KalmanObs,6 ));
// add measurement noise
dt(2) += (0.02*randun()-0.01);
dt(3) += (0.02*randun()-0.01);
// true values
dt(6)=x[2];
dt(7)=x[3];
dt(8)=x[8];
}
void write ( vec &ut ) {}
void step()
{
pmsmsim_fill_xy(x,KalmanObs);
static int ind=0;
static double dW; // increase of W
static double Ww; // W
static double Mz; // W
double t;
t=pmsmsim_get_t();
if ( t>=dt_prof*ind )
{
ind++;
// check omega profile and set dW
if ( ind <2 && profileWw.length() ==1 )
{
Ww=profileWw ( 0 );
dW=0.0;
}
if ( ind0.3 ) - double ( i1<-0.3 ) ) +0.2*i1;
double du2=1.4* ( double ( i2>0.3 ) - double ( i2<-0.3 ) ) +0.2*i2;
double du3=1.4* ( double ( i3>0.3 ) - double ( i3<-0.3 ) ) +0.2*i3;
ua = ( 2.0* ( u1-du1 )- ( u2-du2 )- ( u3-du3 ) ) /3.0;
ub = ( ( u2-du2 )- ( u3-du3 ) ) /sq3;
log_level.store( logvoltage , vec_2 ( ua,ub ) );
}
}
void set_profile ( double dt, const vec &Ww, const vec &Mz )
{
dt_prof=dt;
profileWw=Ww;
profileMz=Mz;
}
void from_setting( const Setting &root )
{
const SettingResolver& params_l(root["params"]);
const Setting ¶ms = params_l.result;
set_parameters ( params["Rs"], params["Ls"], params["Fmag"], \
params["Bf"], params["p"], params["kp"], \
params["J"], params["Uc"], params["DT"], 1.0e-6 );
// Default values of profiles for omega and Mz
vec profW=vec("1.0");
vec profM=vec("0.0");
double tstep=1.0;
UI::get( tstep, root, "tstep");
UI::get( profW, root, "profileW" );
UI::get( profM, root, "profileM" );
set_profile (tstep , profW, profM);
}
// TODO dodelat void to_setting( Setting &root ) const;
};
UIREGISTER ( pmsmDS );
//! Simulator of PMSM machine with predefined profile on omega
class pmsmDSctrl : public pmsmDS
{
double Ww;
double ua;
double ub;
public:
//! Constructor with fixed sampling period
pmsmDSctrl() : pmsmDS()
{
Drv.add(RV ( "{Ww }" ));
Urv=RV ( "{ua ub }" );
dtsize = Drv._dsize();
utsize = Urv._dsize();
}
void getdata ( vec &dt ) const
{
pmsmDS::getdata(dt);
dt(9)=Ww;
}
void write (const vec &ut ) {
ua = ut(0);
ub = ut(1);
}
void step()
{
pmsmsim_fill_xy(x,KalmanObs);
double t;
static int ind=0;
static double dW; // increase of W
static double Mz; // W
t=pmsmsim_get_t();
if ( t>=dt_prof*ind )
{
ind++;
// check omega profile and set dW
if ( ind <2 && profileWw.length() ==1 )
{
Ww=profileWw ( 0 );
dW=0.0;
}
if ( indeval(old_true));
//second derivative
IMpmsm2o* pf = dynamic_cast(pfxu.get());
if (pf)
{
secder=pf->eval2o(u-umin);
}
umin =u;
EKFfull::bayes(dt);
old_true.set_subvector(0,true_state);
}
void from_setting( const Setting &root )
{
shared_ptr IM = UI::build(root, "IM");
shared_ptr OM = UI::build(root, "OM");
//parameters
//statistics
int dim=IM->dimension();
vec mu0;
if(root.exists("mu0"))
UI::get( mu0, root, "mu0");
else
mu0=zeros(dim);
mat P0;
if(root.exists( "dP0" ))
{
vec dP0;
UI::get(dP0,root, "dP0");
P0=diag(dP0);
}
else if (root.exists("P0"))
UI::get(P0,root, "P0");
else
P0=eye(dim);
set_statistics(mu0,P0);
vec dQ;
UI::get( dQ, root, "dQ");
vec dR;
UI::get( dR, root, "dR");
set_parameters(IM, OM, diag(dQ) , diag(dR));
//connect
shared_ptr drv = UI::build(root, "drv");
set_yrv(*drv);
shared_ptr rv = UI::build(root, "rv");
set_rv(*rv);
}
// TODO dodelat void to_setting( Setting &root ) const;
};
UIREGISTER ( pmsmCRB );
//! This class behaves like BM but it is evaluating EKF
class pmsmCRBMz : public EKFfull
{
protected:
int L_CRB;
public:
//! constructor
pmsmCRBMz():EKFfull() {}
void bayes(const vec &dt)
{
//assume we know state exactly:
vec true_state(5);
true_state.set_subvector(0,vec(x,4)); // read from pmsm
true_state(4)=x[8];
vec &mu = est._mu();
mu = true_state;
//hack for ut
EKFfull::bayes(dt);
}
void from_setting( const Setting &root )
{
shared_ptr IM = UI::build(root,"IM");
shared_ptr OM = UI::build(root,"OM");
//statistics
int dim=IM->dimension();
vec mu0;
if( root.exists( "mu0"))
UI::get(mu0, root, "mu0");
else
mu0=zeros(dim);
mat P0;
if(root.exists("dP0"))
{
vec dP0;
UI::get(dP0, root, "dP0");
P0=diag(dP0);
}
else if(root.exists("P0"))
UI::get( P0, root, "P0" );
else
P0=eye(dim);
set_statistics(mu0,P0);
vec dQ;
UI::get(dQ, root, "dQ");
vec dR;
UI::get(dR, root, "dR");
set_parameters(IM, OM, diag(dQ), diag(dR));
//connect
shared_ptr drv = UI::build(root, "drv");
set_yrv(*drv);
shared_ptr rv = UI::build(root, "rv");
set_rv(*rv);
}
// TODO dodelat void to_setting( Setting &root ) const;
};
UIREGISTER ( pmsmCRBMz );
#endif
#endif