#ifndef PMSM_CTR_H #define PMSM_CTR_H #include #include #include "pmsm.h" #include /*! \defgroup PMSM @{ */ using namespace bdm; /*! PI Controller*/ class PI_ctrl: public Controller{ public: //!integral state double S; double Pd; double Pi; double minOut; double maxOut; PI_ctrl(double Pd0, double Pi0, double minOut0, double maxOut0): S(0.0), Pd(Pd0), Pi(Pi0),minOut(minOut0),maxOut(maxOut0){} virtual vec ctrlaction ( const vec &cond ) { double tmp; tmp = Pd*cond(0)+S; S += Pi*cond(0); if (tmp>maxOut) tmp=maxOut; if (tmp Est; //! switch to use or not to use the internal estimator bool estim; // internal quantities filled by PMSMCtrl::ctrlaction() double isa; double isb; double ome; double the; double Ww; public: PMSMCtrl():Controller() { rv = RV("{ua ub }"); rvc = RV("{o_ia o_ib t_ua t_ub o_om o_th Ww }"); } void adapt(const itpp::vec& data){ if (estim){ vec y=data.get(0,1); vec u=data.get(2,3); Est->bayes(y,u); } } virtual vec ctrlaction(const itpp::vec& cond) { if (estim){ vec x_est=Est->posterior().mean(); isa=x_est(0); isb=x_est(1); ome=x_est(2); the=x_est(3); } else { isa=cond(0);//x_est(0); isb=cond(1);//x_est(1); ome=cond(4);//x[2];//x_est(2); the=cond(5);//x_est(3); } Ww=cond(6); return empty_vec; // dummy return }; void from_setting(const libconfig::Setting& set){ Controller::from_setting(set); Est=UI::build(set,"estim",UI::optional); estim = Est; } void log_register ( logger &L, const string &prefix ) { Controller::log_register(L,prefix); if (estim) Est->log_register(L,prefix); } void log_write() const{ if (estim) Est->log_write(); } }; //UIREGISTER(PMSMCtrl); -- abstract class PMSM_PICtrl: public PMSMCtrl{ public: PI_ctrl Cwq; PI_ctrl Cuq; PI_ctrl Cud; PMSM_PICtrl():PMSMCtrl(), Cwq(3.0, 3.0*0.000125/0.1, -1200, 1200), Cuq(20.0, 20.0*0.000125/0.005, -1200, 1200), Cud(20.0, 20.0*0.000125/0.005, -1200, 1200) {} virtual vec ctrlaction(const itpp::vec& cond) { PMSMCtrl::ctrlaction(cond); // fills isa,isb,om,the double Isd = isa*cos(the)+isb*sin(the); double Isq = isb*cos(the)-isa*sin(the); double Iqw=(Cwq.ctrlaction(vec_1(Ww-ome)))(0); // conversion from vec double ud = (Cud.ctrlaction(vec_1(-Isd)))(0); double uq = (Cuq.ctrlaction(vec_1(Iqw-Isq)))(0); const double Ls0=0.003465; // inductance const double Fmag0= 0.1989; // Magnetic?? ud-=Ls0*ome*Iqw; // har uq+=Fmag0*ome; double Um = sqrt(ud*ud+uq*uq); double beta = atan(uq/ud); if (ud<0) beta += M_PI; beta +=the; vec uab(2); uab(0)=Um*cos(beta); // usx = usa uab(1)=Um*sin(beta); // usy return uab; }; }; UIREGISTER(PMSM_PICtrl); class PMSM_LQCtrl: public PMSMCtrl{ public: /* PMSMCtrl: double isa; double isb; double ome; double the; double Ww; */ //PMSM parameters const double a; const double b; const double c; const double d; const double e; //input penalty double r; //time step const double Dt; //receding horizon int rec_hor; //system matrices mat A; //5x5 mat B; //5x2 //mat C; //2x5 mat Q; //5x5 mat R; //2x2 //control matrix mat L; vec uab; vec icond; //control maximum const double MAXu; //lqg controler class LQG_universal lq; //prediction vec p_isa, p_isb, p_ome, p_the; PMSM_LQCtrl():PMSMCtrl(), a(0.9898), b(0.0072), c(0.0361), d(1.0), e(0.0149), r(0.005), Dt(0.000125), rec_hor(10), //for r is a default value rewrited by pcp.txt file value A(5, 5), B(5, 2), Q(5, 5), R(2, 2), uab(2), icond(6), MAXu(100.0) { //set fix matrices elements & dimensions A.zeros(); A(0, 0) = A(1, 1) = a; A(2, 2) = d; A(2, 4) = d - 1; A(3, 2) = A(3, 4) = Dt; A(3, 3) = A(4, 4) = 1.0; B.zeros(); B(0, 0) = B(1, 1) = c; //C.zeros(); // C(0, 0) = C(1, 1) = 1.0; Q.zeros(); Q(2, 2) = 1.0; R.zeros(); } virtual vec ctrlaction(const itpp::vec& cond) { PMSMCtrl::ctrlaction(cond); // fills isa,isb,ome,the,Ww int i; lq.resetTime(); //create prediction p_isa.zeros(); p_isb.zeros(); p_ome.zeros(); p_the.zeros(); p_isa(0) = isa; p_isb(0) = isb; p_ome(0) = ome; p_the(0) = the; for(i = 0; i < rec_hor-1; i++){ p_isa(i+1) = a*p_isa(i) + b*p_ome(i)*sin(p_the(i)) + c*0;//uab(0); //use last used control p_isb(i+1) = a*p_isb(i) - b*p_ome(i)*cos(p_the(i)) + c*0;//uab(1); p_ome(i+1) = d*p_ome(i) + e*(p_isb(i)*cos(p_the(i)) - p_isa(i)*sin(p_the(i))); p_the(i+1) = p_the(i) + Dt*p_ome(i); } //create control matrix for(i = rec_hor; i > 0; i--){ //set variable matrices elements (A matrix only) A(0, 2) = b*sin(p_the(i)); A(0, 3) = b*(p_ome(i))*cos(p_the(i)); A(0, 4) = b*sin(p_the(i)); A(1, 2) = -b*cos(p_the(i)); A(1, 3) = b*(p_ome(i))*sin(p_the(i)); A(1, 4) = -b*cos(p_the(i)); A(2, 0) = -e*sin(p_the(i)); A(2, 1) = e*cos(p_the(i)); A(2, 3) = -e*(p_isa(i)*cos(p_the(i)) + p_isb(i)*sin(p_the(i))); lq.Models(0).A = A; lq.redesign(); } lq.redesign(); L = lq.getL(); icond(0) = isa; icond(1) = isb; icond(2) = ome - Ww; icond(3) = the; icond(4) = Ww; icond(5) = 1; vec tmp = L*icond; uab = tmp(0,1); if(uab(0) > MAXu) uab(0) = MAXu; else if(uab(0) < -MAXu) uab(0) = -MAXu; if(uab(1) > MAXu) uab(1) = MAXu; else if(uab(1) < -MAXu) uab(1) = -MAXu; return uab; }; void from_setting(const Setting &set){ PMSMCtrl::from_setting(set); UI::get(r,set, "r", UI::optional); UI::get(rec_hor,set, "h", UI::optional); } void validate(){ R(0,0)=R(1,1)=r; p_isa.set_length(rec_hor+1); p_isb.set_length(rec_hor+1); p_ome.set_length(rec_hor+1); p_the.set_length(rec_hor+1); Array qloss(2); qloss(0).Q.setCh(Q); qloss(0).rv = RV("x", 5, 1); qloss(1).Q.setCh(R); qloss(1).rv = RV("u", 2, 0); lq.Losses = qloss; //set lq lq.rv = RV("u", 2, 0); lq.set_rvc(RV("x", 5, 0)); lq.horizon = rec_hor; Array model(2); model(0).A = A; model(0).B = vec("0 0 0 0 0"); model(0).rv = RV("x", 5, 0); model(0).rv_ret = RV("x", 5, 1); model(1).A = B; model(1).B = vec("0 0"); model(1).rv = RV("u", 2, 0); model(1).rv_ret = RV("x", 5, 1); lq.Models = model; lq.finalLoss.Q.setCh(Q); lq.finalLoss.rv = RV("x", 5, 1); lq.validate(); uab.zeros(); } }; UIREGISTER(PMSM_LQCtrl); /*!@}*/ #endif //PMSM_CTR_H