1 | /************************************ |
---|
2 | Extended Kalman Filter |
---|
3 | Matrix operations |
---|
4 | |
---|
5 | V. Smidl, Z. Peroutka |
---|
6 | |
---|
7 | Rev. 28.10.2010 (ZP) |
---|
8 | |
---|
9 | 26.10.2010 Prvni verze (VS) |
---|
10 | |
---|
11 | 26.10.2010 Upravena chyba v Thorton_fast - spatne shiftovani o vypoctu SIGMA. |
---|
12 | 27.10.2010 Pokus o odstraneni problemu v Thorton_fast - potize dela omezovani (orezavani) varianci. |
---|
13 | 28.10.2010 Drobne upravy v kodu. |
---|
14 | |
---|
15 | *************************************/ |
---|
16 | |
---|
17 | #include "matrix.h" |
---|
18 | #include <math.h> |
---|
19 | |
---|
20 | #define HIGH_PRECISION 0 |
---|
21 | |
---|
22 | /* Matrix multiply Full matrix by upper diagonal matrix; */ |
---|
23 | void mmultAU(int *m1, int *up, int *result, unsigned int rows, unsigned int columns) |
---|
24 | { |
---|
25 | unsigned int i, j, k; |
---|
26 | long tmp_sum=0L; //in 15+qAU |
---|
27 | int *m2pom; |
---|
28 | int *m1pom=m1; |
---|
29 | int *respom=result; |
---|
30 | |
---|
31 | for (i=0; i<rows; i++) //rows of result |
---|
32 | { |
---|
33 | for (j=0; j<columns; j++) //columns of result |
---|
34 | { |
---|
35 | m2pom=up+j; |
---|
36 | |
---|
37 | for (k=0; k<j; k++) //inner loop up to "j" - U(j,j)==1; |
---|
38 | { |
---|
39 | tmp_sum += ((long)(*(m1pom++))**m2pom)>>(15-qAU); |
---|
40 | m2pom+=columns; |
---|
41 | } |
---|
42 | // add the missing A(i,j) |
---|
43 | tmp_sum += (long)(*m1pom)<<qAU; // no need to shift |
---|
44 | m1pom-=j; // shift back to first element |
---|
45 | |
---|
46 | *respom++=tmp_sum>>15; |
---|
47 | |
---|
48 | tmp_sum=0; |
---|
49 | } |
---|
50 | m1pom+=columns; |
---|
51 | } |
---|
52 | }; |
---|
53 | |
---|
54 | |
---|
55 | void bierman_fast(int *difz, int *xp, int *U, int *D, int *R, unsigned int dimy, unsigned int dimx ) |
---|
56 | { |
---|
57 | int alpha; |
---|
58 | int beta,lambda; |
---|
59 | int b[5]; // ok even for 4-dim state |
---|
60 | int *a; // in [0,1] -> q15 |
---|
61 | unsigned int iy,j,i; |
---|
62 | |
---|
63 | int *b_j,*b_i; |
---|
64 | int *a_j; |
---|
65 | int *D_j; |
---|
66 | int *U_ij; |
---|
67 | int *x_i; |
---|
68 | |
---|
69 | a = U; // iyth row of U |
---|
70 | for (iy=0; iy<dimy; iy++) |
---|
71 | { |
---|
72 | // a is a row |
---|
73 | a_j=a; |
---|
74 | b_j=b; |
---|
75 | D_j=D; |
---|
76 | |
---|
77 | for (j=0; j<dimx; j++) |
---|
78 | { |
---|
79 | *b_j=((long)(*D_j)*(*a_j))>>15; |
---|
80 | b_j++; |
---|
81 | D_j++; |
---|
82 | a_j++; |
---|
83 | } |
---|
84 | |
---|
85 | alpha = R[iy]; //\alpha = R+vDv = R+a*b |
---|
86 | // R in q15, a in q15, b=q15 |
---|
87 | |
---|
88 | a_j=a; |
---|
89 | b_j=b; |
---|
90 | D_j=D; |
---|
91 | |
---|
92 | for (j=0; j<dimx; j++) |
---|
93 | { |
---|
94 | lambda=alpha; |
---|
95 | if (HIGH_PRECISION == 0) |
---|
96 | alpha = alpha + (((long)(*a_j)*(*b_j))>>15); |
---|
97 | else |
---|
98 | alpha = (((long)alpha<<15) + (long)(*a_j)*(*b_j))>>15; // xxxx lepsi presnost |
---|
99 | |
---|
100 | *D_j = ((long)lambda**D_j)/alpha; |
---|
101 | |
---|
102 | if (*D_j==0) *D_j=1; |
---|
103 | |
---|
104 | b_i=b; |
---|
105 | U_ij=U+j; |
---|
106 | |
---|
107 | for (i=0; i<j; i++) |
---|
108 | { |
---|
109 | beta = *U_ij; |
---|
110 | if (HIGH_PRECISION == 0) |
---|
111 | { |
---|
112 | *U_ij = *U_ij - ((long)(*a_j)*(*b_i))/lambda; |
---|
113 | *b_i = *b_i + (((long)beta*(*b_j))>>15); |
---|
114 | } |
---|
115 | else |
---|
116 | { |
---|
117 | *U_ij = ((long)lambda**U_ij - (long)(*a_j)*(*b_i))/lambda; |
---|
118 | *b_i = (((long)*b_i<<15) + (long)beta**b_j)>>15; |
---|
119 | } |
---|
120 | b_i++; |
---|
121 | U_ij+=dimx; |
---|
122 | } |
---|
123 | |
---|
124 | a_j++; |
---|
125 | b_j++; |
---|
126 | D_j++; |
---|
127 | } |
---|
128 | |
---|
129 | x_i=xp; |
---|
130 | b_i=b; |
---|
131 | |
---|
132 | for (i=0; i<dimx; i++) |
---|
133 | { |
---|
134 | if (HIGH_PRECISION == 0) |
---|
135 | *x_i += ((long)difz[iy]**b_i)/alpha; // multiply by unscaled Kalman gain |
---|
136 | else |
---|
137 | *x_i = ((long)alpha**x_i + (long)difz[iy]**b_i)/alpha; |
---|
138 | |
---|
139 | x_i++; |
---|
140 | b_i++; |
---|
141 | } |
---|
142 | |
---|
143 | a+=dimx; |
---|
144 | } |
---|
145 | } |
---|
146 | |
---|
147 | /**/ |
---|
148 | |
---|
149 | // Thorton procedure - Kalman predictive variance in UD |
---|
150 | void thorton_fast(int *U, int *D, int *PSIU, int *Q, int *G, int *Dold, unsigned int rows) { |
---|
151 | unsigned int i,j,k; |
---|
152 | // copy D to Dold |
---|
153 | int *Dold_i,*Dold_k; |
---|
154 | int *D_i; |
---|
155 | int *PSIU_ij,*PSIU_ik,*PSIU_jk; |
---|
156 | int *Q_jj,*Q_ii,*Q_kk; |
---|
157 | int *U_ji; |
---|
158 | int *G_ik,*G_jk; |
---|
159 | int irows,jrows; |
---|
160 | long sigma; // in qAU+15!! |
---|
161 | long z; |
---|
162 | long z_tmp; |
---|
163 | |
---|
164 | Dold_i=Dold; |
---|
165 | D_i=D; |
---|
166 | |
---|
167 | for (i=0;i<rows;i++) |
---|
168 | { |
---|
169 | *Dold_i=*D_i; |
---|
170 | Dold_i++; |
---|
171 | D_i++; |
---|
172 | } |
---|
173 | |
---|
174 | // initialize G = eye() |
---|
175 | G_ik= G; |
---|
176 | *G_ik++=32767; |
---|
177 | for (i=0;i<rows-1;i++) |
---|
178 | { |
---|
179 | // clean elem before diag |
---|
180 | for (k=0; k<rows; k++) |
---|
181 | { |
---|
182 | *G_ik++=0; |
---|
183 | } |
---|
184 | *G_ik++=32767; |
---|
185 | } |
---|
186 | // eye created |
---|
187 | |
---|
188 | Dold_i=Dold+rows-1; |
---|
189 | D_i=D+rows-1; |
---|
190 | |
---|
191 | for (i=rows-1; 1; i--) |
---|
192 | { // stop if i==0 at the END! |
---|
193 | irows=i*rows; |
---|
194 | sigma = 0; |
---|
195 | |
---|
196 | PSIU_ik=PSIU+irows; |
---|
197 | Dold_k=Dold; |
---|
198 | |
---|
199 | for (k=0;k<rows; k++) |
---|
200 | { |
---|
201 | sigma += (((long)(*PSIU_ik)**PSIU_ik)>>(qAU))*(*Dold_k); |
---|
202 | PSIU_ik++; |
---|
203 | Dold_k++; |
---|
204 | } |
---|
205 | |
---|
206 | sigma += (long)*(Q+i+irows)<<(qAU+qD-15); |
---|
207 | |
---|
208 | G_ik=G+irows+i+1; |
---|
209 | |
---|
210 | for (j=i+1; j<rows; j++) |
---|
211 | { |
---|
212 | sigma += ((((long)(*G_ik)**G_ik)>>15)**(Q+j+j*rows))>>(30-qAU-qD); |
---|
213 | G_ik++; |
---|
214 | } |
---|
215 | |
---|
216 | if (sigma>((long)1<<(15+qAU))) |
---|
217 | { |
---|
218 | *D_i = 32767; |
---|
219 | } else |
---|
220 | { |
---|
221 | *D_i=sigma>>qAU; |
---|
222 | } |
---|
223 | |
---|
224 | if (*D_i==0) *D_i=1; |
---|
225 | |
---|
226 | for (j=0;j<i;j++) |
---|
227 | { |
---|
228 | jrows = j*rows; |
---|
229 | |
---|
230 | sigma =0; |
---|
231 | PSIU_ik=PSIU+irows; |
---|
232 | PSIU_jk=PSIU+jrows; |
---|
233 | Dold_k=Dold; |
---|
234 | |
---|
235 | for (k=0;k<rows; k++) |
---|
236 | { |
---|
237 | |
---|
238 | sigma += (((long)(*PSIU_ik)**PSIU_jk)>>qAU)**Dold_k; |
---|
239 | PSIU_ik++; |
---|
240 | PSIU_jk++; |
---|
241 | Dold_k++; |
---|
242 | } |
---|
243 | |
---|
244 | G_ik=G+irows+i; |
---|
245 | G_jk=G+jrows+i; |
---|
246 | Q_kk=Q+i*rows+i; |
---|
247 | |
---|
248 | for (k=i;k<rows;k++) |
---|
249 | { |
---|
250 | sigma += ((((long)(*G_ik)**G_jk)>>15)**Q_kk)>>(30-qAU-qD); |
---|
251 | G_ik++; |
---|
252 | G_jk++; |
---|
253 | Q_kk+=rows+1; |
---|
254 | } |
---|
255 | |
---|
256 | z=(sigma/(*D_i))<<(15-qAU); // shift to q15 |
---|
257 | if (z>32767) z=32767; |
---|
258 | if (z<-32768) z=-32768; |
---|
259 | |
---|
260 | U_ji=U+jrows+i; |
---|
261 | *U_ji = z; |
---|
262 | |
---|
263 | |
---|
264 | PSIU_ik=PSIU+irows; |
---|
265 | PSIU_jk=PSIU+jrows; |
---|
266 | |
---|
267 | for (k=0; k<rows;k++) |
---|
268 | { |
---|
269 | if (HIGH_PRECISION == 0) |
---|
270 | *PSIU_jk -= ((long)*U_ji**PSIU_ik)>>15; |
---|
271 | else |
---|
272 | *PSIU_jk = (((long)(*PSIU_jk)<<15) - (long)*U_ji**PSIU_ik)>>15; |
---|
273 | |
---|
274 | PSIU_ik++; |
---|
275 | PSIU_jk++; |
---|
276 | } |
---|
277 | |
---|
278 | G_jk=G+jrows; |
---|
279 | G_ik=G+irows; |
---|
280 | |
---|
281 | for (k=0;k<rows;k++) |
---|
282 | { |
---|
283 | if (HIGH_PRECISION == 0) |
---|
284 | *G_jk -= ((long)*U_ji**G_ik)>>15; |
---|
285 | else |
---|
286 | *G_jk = (((long)(*G_jk)<<15) - (long)*U_ji**G_ik)>>15; |
---|
287 | G_jk++; |
---|
288 | G_ik++; |
---|
289 | } |
---|
290 | } |
---|
291 | |
---|
292 | Dold_i--; |
---|
293 | D_i--; |
---|
294 | if (i==0) return; |
---|
295 | } |
---|
296 | } |
---|
297 | |
---|
298 | /* square root of 0<a<1 using taylor at 0.5 in q15*/ |
---|
299 | int16 int_sqrt(int16 x) { |
---|
300 | double xd(double(x)/32768.); |
---|
301 | return (int)((sqrt(xd)+0.5)*32768); |
---|
302 | |
---|
303 | //sqrt(x) == 1/2*2^(1/2)+1/2*2^(1/2)*(x-1/2)-1/4*2^(1/2)*(x-1/2)^2 |
---|
304 | // = k1 + k1*(x-0.5) - k2*(x-0.5)(x-0.5); |
---|
305 | #define k1 23170 //0.5*sqrt(2)*32768 |
---|
306 | #define k2 11585 //0.25*sqrt(2)*32768 |
---|
307 | |
---|
308 | int16 tmp; |
---|
309 | if (x>6554) { |
---|
310 | int16 xm05=x-16384; |
---|
311 | tmp = ((long)k1*xm05)>>15; |
---|
312 | tmp-=(((long(k2)*xm05)>>15)*xm05)>>15; |
---|
313 | tmp +=k1; |
---|
314 | } else { |
---|
315 | tmp = 4*x; |
---|
316 | tmp-=long(8*x)*x>>15; |
---|
317 | } |
---|
318 | return tmp; |
---|
319 | } |
---|
320 | |
---|
321 | void householder(int16 *Ch, int16 *Q, unsigned int16 dimx) |
---|
322 | { |
---|
323 | int16 k,j,i; |
---|
324 | int16 alpha,beta; |
---|
325 | int32 sigma; // 2*qCh |
---|
326 | int32 tmp_long; |
---|
327 | int16 B[25];//Q in qCh |
---|
328 | int16 w[5]; |
---|
329 | int16 v[5]; |
---|
330 | |
---|
331 | int16 *B_ij, *Q_i, *B_kj, *Ch_kj, *Ch_ij, *w_j, *v_j; |
---|
332 | |
---|
333 | B_ij=B; |
---|
334 | Q_i=Q; |
---|
335 | // copy Q to B |
---|
336 | for (i=0;i<dimx*dimx;i++) |
---|
337 | { |
---|
338 | *B_ij++=(*Q_i++)>>(15-qCh); |
---|
339 | } |
---|
340 | |
---|
341 | for (k=dimx-1; k>=0; k--) |
---|
342 | { |
---|
343 | sigma=0; |
---|
344 | B_kj=B+k*dimx+k; |
---|
345 | Ch_kj=Ch+k*dimx; |
---|
346 | |
---|
347 | for (j=k;j<dimx ;j++) |
---|
348 | { |
---|
349 | sigma+=((long)*B_kj**B_kj); |
---|
350 | B_kj++; |
---|
351 | } |
---|
352 | |
---|
353 | for (j=0;j<=k;j++) |
---|
354 | { |
---|
355 | sigma+=((long)*Ch_kj**Ch_kj); |
---|
356 | Ch_kj++; |
---|
357 | } |
---|
358 | |
---|
359 | //alpha in qCh |
---|
360 | alpha = (int)(sqrt((double)sigma)+0.5); // verze pro PC |
---|
361 | // alpha = qsqrt(sigma); // verze pro DSP |
---|
362 | |
---|
363 | sigma=0; |
---|
364 | |
---|
365 | w_j=w; |
---|
366 | B_kj=B+k*dimx; |
---|
367 | |
---|
368 | for (j=0;j<dimx;j++) |
---|
369 | { |
---|
370 | *w_j=*B_kj; |
---|
371 | sigma+=(long)*w_j**w_j; |
---|
372 | w_j++; |
---|
373 | B_kj++; |
---|
374 | } |
---|
375 | |
---|
376 | v_j=v; |
---|
377 | Ch_kj=Ch+k*dimx; |
---|
378 | |
---|
379 | for (j=0; j<=k;j++) |
---|
380 | { |
---|
381 | if (j==k) { |
---|
382 | *v_j=*Ch_kj-alpha; |
---|
383 | } else { |
---|
384 | *v_j=*Ch_kj; |
---|
385 | } |
---|
386 | sigma+=(long)*v_j**v_j; |
---|
387 | |
---|
388 | v_j++; |
---|
389 | Ch_kj++; |
---|
390 | } |
---|
391 | |
---|
392 | alpha=sigma>>(qCh+1); // alpha = sigma /2; |
---|
393 | if (alpha==0) alpha =1; |
---|
394 | |
---|
395 | for (i=0;i<=k;i++) |
---|
396 | { |
---|
397 | sigma=0; |
---|
398 | |
---|
399 | B_ij=B+i*dimx+i; |
---|
400 | w_j=w+i; |
---|
401 | |
---|
402 | for (j=i;j<dimx;j++) |
---|
403 | { |
---|
404 | sigma+=((long)*B_ij**w_j); |
---|
405 | |
---|
406 | B_ij++; |
---|
407 | w_j++; |
---|
408 | } |
---|
409 | |
---|
410 | Ch_ij = Ch + i*dimx; |
---|
411 | v_j=v; |
---|
412 | |
---|
413 | for (j=0;j<=k;j++) |
---|
414 | { |
---|
415 | sigma+=(long)*Ch_ij**v_j; |
---|
416 | |
---|
417 | Ch_ij++; |
---|
418 | v_j++; |
---|
419 | } |
---|
420 | |
---|
421 | sigma = sigma >> 15; // navrat do Q15 |
---|
422 | if (sigma>32767) sigma=32767; |
---|
423 | |
---|
424 | |
---|
425 | B_ij=B+i*dimx+i; |
---|
426 | w_j=w+i; |
---|
427 | |
---|
428 | for (j=i;j<dimx;j++) |
---|
429 | { |
---|
430 | tmp_long=((long)*B_ij*alpha-sigma**w_j)/alpha; |
---|
431 | if (tmp_long>32767) |
---|
432 | tmp_long=32767; |
---|
433 | if (tmp_long<-32768) |
---|
434 | tmp_long=-32768; |
---|
435 | *B_ij++=tmp_long; |
---|
436 | w_j++; |
---|
437 | }; |
---|
438 | |
---|
439 | Ch_ij=Ch+i*dimx; |
---|
440 | v_j=v; |
---|
441 | |
---|
442 | for (j=0;j<=k;j++) |
---|
443 | { |
---|
444 | tmp_long=((long)*Ch_ij*alpha-sigma**v_j)/alpha; |
---|
445 | if (tmp_long>32767) |
---|
446 | tmp_long=32767; |
---|
447 | if (tmp_long<-32768) |
---|
448 | tmp_long=-32768; |
---|
449 | *Ch_ij++=tmp_long; |
---|
450 | v_j++; |
---|
451 | } |
---|
452 | } |
---|
453 | } |
---|
454 | } |
---|
455 | |
---|
456 | |
---|
457 | // Nize uvedene fce jsou dle implementace v DSP |
---|
458 | void carlson(int16 *difz, int16 *xp, int16 *Ch, int16 *R, unsigned int16 dimy, unsigned int16 dimx ) { |
---|
459 | int16 alpha,beta,gamma; |
---|
460 | int16 delta, eta,epsilon,zeta,sigma,tau; |
---|
461 | int16 i,j,iy; |
---|
462 | int16 w[5]; |
---|
463 | int32 tmp_long; |
---|
464 | |
---|
465 | int16 *Ch_ij, *w_i, *x_i; |
---|
466 | |
---|
467 | |
---|
468 | for (iy=0; iy<dimy; iy++) |
---|
469 | { |
---|
470 | alpha=R[iy]; |
---|
471 | delta = difz[iy]; |
---|
472 | |
---|
473 | for (j=0;j<dimx;j++) |
---|
474 | { |
---|
475 | sigma=Ch[iy*dimx+j]; |
---|
476 | beta=alpha; |
---|
477 | // alpha+=((long)sigma*sigma)>>15; |
---|
478 | alpha=(((long)alpha<<15)+(long)sigma*sigma)>>15; // vyssi presnost |
---|
479 | // gamma= qsqrt(((long)alpha*beta)); // verze pro DSP |
---|
480 | gamma= (int)(sqrt((double)((long)alpha*beta))); // verze pro PC |
---|
481 | |
---|
482 | w[j]=0; |
---|
483 | |
---|
484 | Ch_ij=Ch+j; |
---|
485 | w_i=w; |
---|
486 | |
---|
487 | for (i=0;i<=j;i++) |
---|
488 | { |
---|
489 | // tau=Ch[i*dimx+j]; |
---|
490 | tau=*Ch_ij; |
---|
491 | // tmp_long=((long)beta*Ch[i*dimx+j] -(long)sigma*w[i])/gamma; |
---|
492 | tmp_long=((long)beta**Ch_ij -(long)sigma**w_i)/gamma; |
---|
493 | |
---|
494 | if (tmp_long>32767) |
---|
495 | tmp_long=32767; |
---|
496 | if (tmp_long<-32768) |
---|
497 | tmp_long=-32768; |
---|
498 | *Ch_ij=tmp_long; |
---|
499 | |
---|
500 | // w_i+=((long)tau*sigma)>>15; |
---|
501 | *w_i=(((long)*w_i<<15)+(long)tau*sigma)>>15; |
---|
502 | |
---|
503 | w_i++; |
---|
504 | Ch_ij+=dimx; |
---|
505 | } |
---|
506 | } |
---|
507 | |
---|
508 | x_i=xp; |
---|
509 | w_i=w; |
---|
510 | for (i=0;i<dimx;i++) { |
---|
511 | // xp[i]+=((long)w[i]*delta)/alpha; |
---|
512 | // *x_i+=((long)*w_i*delta)/alpha; |
---|
513 | *x_i=((long)*x_i*alpha+(long)*w_i*delta)/alpha; // vyssi presnost |
---|
514 | x_i++; |
---|
515 | w_i++; |
---|
516 | } |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | /* Matrix multiply Full matrix by upper diagonal matrix; */ |
---|
521 | void mmultACh(int16 *m1, int16 *up, int16 *result, unsigned int16 rows, unsigned int16 columns) { |
---|
522 | unsigned int16 i, j, k; |
---|
523 | int32 tmp_sum=0L; |
---|
524 | int16 *m2pom; |
---|
525 | int16 *m1pom=m1; |
---|
526 | int16 *respom=result; |
---|
527 | |
---|
528 | for (i=0; i<rows; i++) //rows of result |
---|
529 | { |
---|
530 | for (j=0; j<columns; j++) //columns of result |
---|
531 | { |
---|
532 | m2pom=up+j;//?? |
---|
533 | |
---|
534 | for (k=0; k<=j; k++) //inner loop up to "j" - U(j,j)==1; |
---|
535 | { |
---|
536 | tmp_sum+=(int32)(*(m1pom++))**m2pom; |
---|
537 | m2pom+=columns; |
---|
538 | } |
---|
539 | m1pom-=(j+1); // shift back to first element |
---|
540 | |
---|
541 | *respom++=tmp_sum>>15; |
---|
542 | |
---|
543 | tmp_sum=0; |
---|
544 | } |
---|
545 | m1pom+=(columns); |
---|
546 | } |
---|
547 | } |
---|
548 | |
---|
549 | void givens(int16 *Ch, int16 *Q, unsigned int16 dimx) |
---|
550 | { |
---|
551 | int16 i,j,k; |
---|
552 | int16 rho,s,c,tau; |
---|
553 | int32 tmp_long; |
---|
554 | |
---|
555 | int16 A[25];//beware |
---|
556 | |
---|
557 | int16 *A_ij, *Q_i, *Ch_ki, *Ch_kj, *Ch_ii, *Ch_ij, *A_kj; |
---|
558 | |
---|
559 | A_ij=A; |
---|
560 | Q_i=Q; |
---|
561 | // copy Q to A |
---|
562 | for (i=0;i<dimx*dimx;i++) |
---|
563 | { |
---|
564 | // A[i]=Q[i]>>(15-qCh); |
---|
565 | *A_ij++=(*Q_i++)>>(15-qCh); |
---|
566 | } |
---|
567 | |
---|
568 | for (i=dimx-1; i>=0; i--) |
---|
569 | { |
---|
570 | Ch_ii=Ch+i*dimx+i; |
---|
571 | A_ij=A+i*dimx; |
---|
572 | |
---|
573 | for (j=0; j<dimx; j++) |
---|
574 | { |
---|
575 | // tmp_long=(long)Ch[i*dimx+i]*Ch[i*dimx+i]+(long)A[i*dimx+j]*A[i*dimx+j]; |
---|
576 | |
---|
577 | tmp_long=(long)*Ch_ii**Ch_ii+(long)*A_ij**A_ij; |
---|
578 | |
---|
579 | if (tmp_long>0) |
---|
580 | { |
---|
581 | // rho=qsqrt(tmp_long); // verze pro DSP |
---|
582 | rho=(int)(sqrt((double)tmp_long)); // verze pro PC |
---|
583 | s=((long)*A_ij<<15)/rho; |
---|
584 | c=((long)*Ch_ii<<15)/rho; |
---|
585 | |
---|
586 | Ch_ki=Ch+i; |
---|
587 | A_kj=A+j; |
---|
588 | |
---|
589 | for (k=0;k<=i; k++) |
---|
590 | { |
---|
591 | tau=((long)c**A_kj-(long)s**Ch_ki)>>15; |
---|
592 | *Ch_ki=((long)s**A_kj+(long)c**Ch_ki)>>15; |
---|
593 | *A_kj=tau; |
---|
594 | |
---|
595 | Ch_ki+=dimx; |
---|
596 | A_kj+=dimx; |
---|
597 | } |
---|
598 | } |
---|
599 | A_ij++; |
---|
600 | } |
---|
601 | |
---|
602 | Ch_ij = Ch+i*dimx; |
---|
603 | |
---|
604 | for (j=0; j<i; j++) |
---|
605 | { |
---|
606 | tmp_long=(long)*Ch_ii**Ch_ii+(long)*Ch_ij**Ch_ij; |
---|
607 | |
---|
608 | if (tmp_long>0) |
---|
609 | { |
---|
610 | // rho=qsqrt(tmp_long); // verze pro DSP |
---|
611 | rho=(int)(sqrt((double)tmp_long)); // verze pro PC |
---|
612 | s=((long)*Ch_ij<<15)/rho; |
---|
613 | c=((long)*Ch_ii<<15)/rho; |
---|
614 | |
---|
615 | Ch_kj = Ch + j; |
---|
616 | Ch_ki = Ch + i; |
---|
617 | |
---|
618 | for (k=0; k<=i; k++) |
---|
619 | { |
---|
620 | tau=((long)c**Ch_kj-(long)s**Ch_ki)>>15; |
---|
621 | *Ch_ki =((long)s**Ch_kj+(long)c**Ch_ki)>>15; |
---|
622 | *Ch_kj=tau; |
---|
623 | |
---|
624 | Ch_kj += dimx; |
---|
625 | Ch_ki += dimx; |
---|
626 | } |
---|
627 | } |
---|
628 | Ch_ij++; |
---|
629 | } |
---|
630 | } |
---|
631 | } |
---|