1 | |
---|
2 | #include <estim/kalman.h> |
---|
3 | |
---|
4 | #include "ekf_obj.h" |
---|
5 | #include "../simulator.h" |
---|
6 | |
---|
7 | double minQ(double Q){if (Q>1.0){ return 1.0;} else {return Q;};}; |
---|
8 | |
---|
9 | void mat_to_int(const imat &M, int *I){ |
---|
10 | for (int i=0;i<M.rows(); i++){ |
---|
11 | for (int j=0;j<M.cols(); j++){ |
---|
12 | *I++ = M(i,j); |
---|
13 | } |
---|
14 | } |
---|
15 | } |
---|
16 | void vec_to_int(const ivec &v, int *I){ |
---|
17 | for (int i=0;i<v.length(); i++){ |
---|
18 | *I++ = v(i); |
---|
19 | } |
---|
20 | } |
---|
21 | |
---|
22 | /////////////// |
---|
23 | void EKFfixed::bayes(const vec &yt, const vec &ut){ |
---|
24 | ekf(yt(0),yt(1),ut(0),ut(1)); |
---|
25 | |
---|
26 | vec xhat(4); |
---|
27 | //UGLY HACK!!! reliance on a predictor!! |
---|
28 | xhat(0)=zprevod(x_est[0],Qm)*Iref; |
---|
29 | xhat(1)=zprevod(x_est[1],Qm)*Iref; |
---|
30 | xhat(2)=zprevod(x_est[2],Qm)*Wref; |
---|
31 | xhat(3)=zprevod(x_est[3],15)*Thetaref; |
---|
32 | |
---|
33 | E.set_mu(xhat); |
---|
34 | |
---|
35 | if ( BM::evalll ) { |
---|
36 | /* //from enorm |
---|
37 | vec xdif(x,4);//first 4 of x |
---|
38 | //UGLY HACK!!! reliance on a predictor!! |
---|
39 | /* xdif(0)=x[0]-zprevod(x_pred[0],Qm)*Iref; |
---|
40 | xdif(1)=x[1]-zprevod(x_pred[1],Qm)*Iref; |
---|
41 | xdif(2)=x[2]-zprevod(x_pred[2],Qm)*Wref; |
---|
42 | xdif(3)=x[3]-zprevod(x_pred[3],15);*/ |
---|
43 | |
---|
44 | // xdif -=xhat; //(xdif=x-xhat) |
---|
45 | |
---|
46 | mat Pfull(4,4); |
---|
47 | double* Pp=Pfull._data(); |
---|
48 | for(int i=0;i<16;i++){*(Pp++) = zprevod(P_est[i],15);} |
---|
49 | |
---|
50 | E._R()._M()=Pfull; |
---|
51 | |
---|
52 | |
---|
53 | // BM::ll = -0.5* ( 4 * 1.83787706640935 +log ( det ( Pfull ) ) +xdif* ( inv(Pfull)*xdif ) );*/ |
---|
54 | } |
---|
55 | }; |
---|
56 | |
---|
57 | |
---|
58 | void EKFfixed::update_psi(void) |
---|
59 | { |
---|
60 | int t_sin,t_cos,tmp; |
---|
61 | |
---|
62 | // implementace v PC |
---|
63 | t_sin=prevod(sin(Thetaref*x_est[3]/32768.),15); |
---|
64 | t_cos=prevod(cos(Thetaref*x_est[3]/32768.),15); |
---|
65 | |
---|
66 | PSI[2]=((long)cB*t_sin)>>15; |
---|
67 | tmp=((long)cH*x_est[2])>>15; |
---|
68 | PSI[3]=((long)tmp*t_cos)>>15; |
---|
69 | PSI[6]=-((long)cB*t_cos)>>15; |
---|
70 | PSI[7]=((long)tmp*t_sin)>>15; |
---|
71 | } |
---|
72 | |
---|
73 | |
---|
74 | void EKFfixed::prediction(int *ux) |
---|
75 | { |
---|
76 | int t_sin,t_cos, tmp; |
---|
77 | |
---|
78 | // implementace v PC |
---|
79 | //t_sin=prevod(sin(Thetaref*x_est[3]/32768.),15); |
---|
80 | //t_cos=prevod(cos(Thetaref*x_est[3]/32768.),15); |
---|
81 | |
---|
82 | t_sin=prevod(sin(Thetaref*x_est[3]/Qm),15); |
---|
83 | t_cos=prevod(cos(Thetaref*x_est[3]/Qm),15); |
---|
84 | |
---|
85 | tmp=((long)cB*x_est[2])>>15; |
---|
86 | x_pred[0]=((long)cA*x_est[0]+(long)tmp*t_sin+(long)cC*ux[0])>>15; |
---|
87 | x_pred[1]=((long)cA*x_est[1]-(long)tmp*t_cos+(long)cC*ux[1])>>15; |
---|
88 | x_pred[2]=x_est[2]; |
---|
89 | x_pred[3]=(((long)x_est[3]<<15)+(long)cG*x_est[2])>>15; |
---|
90 | |
---|
91 | update_psi(); |
---|
92 | |
---|
93 | mmult(PSI,P_est,temp15a,3,3,3); |
---|
94 | // mtrans(PSI,temp15b,5,5); |
---|
95 | mmultt(temp15a,PSI,P_pred,3,3,3); |
---|
96 | maddD(P_pred,Q,3,3); |
---|
97 | } |
---|
98 | |
---|
99 | void EKFfixed::correction(void) |
---|
100 | { |
---|
101 | int Y_error[2]; |
---|
102 | long temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
---|
103 | |
---|
104 | choice_P(P_pred,temp15a,3); |
---|
105 | maddD(temp15a,R,1,1); |
---|
106 | minv2(temp15a,temp30a); |
---|
107 | Ry(0,0)=zprevod(temp15a[0],15); |
---|
108 | Ry(0,1)=zprevod(temp15a[1],15); |
---|
109 | Ry(1,0)=zprevod(temp15a[2],15); |
---|
110 | Ry(1,1)=zprevod(temp15a[3],15); |
---|
111 | |
---|
112 | mmultDr(P_pred,temp15a,3,3,1,1); |
---|
113 | mmult1530(temp15a,temp30a,Kalm,3,1,1); |
---|
114 | |
---|
115 | |
---|
116 | /* estimate the state system */ |
---|
117 | choice_x(x_pred, temp15a); |
---|
118 | msub(Y_mes,temp15a,Y_error,1,0); |
---|
119 | mmult(Kalm,Y_error,temp15a,3,1,0); |
---|
120 | madd(x_pred,temp15a,x_est,3,0); |
---|
121 | |
---|
122 | /* matrix of covariances - version without MMULTDL() */ |
---|
123 | |
---|
124 | /* Version with MMULTDL() */ |
---|
125 | mmultDl(P_pred,temp15a,1,3,3,1); |
---|
126 | |
---|
127 | mmult(Kalm,temp15a,P_est,3,1,3); |
---|
128 | msub(P_pred,P_est,P_est,3,3); |
---|
129 | /* END */ |
---|
130 | } |
---|
131 | |
---|
132 | |
---|
133 | void EKFfixed::ekf(double ux, double uy, double isxd, double isyd) |
---|
134 | { |
---|
135 | // vypocet napeti v systemu (x,y) |
---|
136 | ukalm[0]=prevod(ux/Uref,Qm); |
---|
137 | ukalm[1]=prevod(uy/Uref,Qm); |
---|
138 | |
---|
139 | // zadani mereni |
---|
140 | Y_mes[0]=prevod(isxd/Iref,Qm); |
---|
141 | Y_mes[1]=prevod(isyd/Iref,Qm); |
---|
142 | |
---|
143 | ////// vlastni rutina EKF ///////////////////////// |
---|
144 | prediction(ukalm); |
---|
145 | correction(); |
---|
146 | |
---|
147 | // navrat estimovanych hodnot regulatoru |
---|
148 | vec& mu = E._mu(); |
---|
149 | (mu)(0)=zprevod(x_est[0],Qm)*Iref; |
---|
150 | (mu)(1)=zprevod(x_est[1],Qm)*Iref; |
---|
151 | (mu)(2)=zprevod(x_est[2],Qm)*Wref; |
---|
152 | (mu)(3)=zprevod(x_est[3],15)*Thetaref; |
---|
153 | } |
---|
154 | |
---|
155 | void EKFfixed::init_ekf(double Tv) |
---|
156 | { |
---|
157 | // Tuning of matrix Q |
---|
158 | Q[0]=prevod(.05,15); // 0.05 |
---|
159 | Q[5]=Q[0]; |
---|
160 | Q[10]=prevod(0.0002,15); // 1e-3 |
---|
161 | Q[15]=prevod(0.001,15); // 1e-3 |
---|
162 | |
---|
163 | // Tuning of matrix R |
---|
164 | R[0]=prevod(0.1,15); // 0.05 |
---|
165 | R[3]=R[0]; |
---|
166 | |
---|
167 | // Motor model parameters |
---|
168 | cA=prevod(1-Tv*Rs/Ls,15); |
---|
169 | cB=prevod(Tv*Wref*Fmag/Iref/Ls,15); |
---|
170 | cC=prevod(Tv/Ls/Iref*Uref,15); |
---|
171 | // cD=prevod(1-Tv*Bf/J,15); |
---|
172 | // cE=prevod(kp*p*p*Tv*Fmag*Iref/J/Wref,15); |
---|
173 | // cF=prevod(p*Tv*Mref/J/Wref,15); |
---|
174 | cG=prevod(Tv*Wref*4/Thetaref,15); |
---|
175 | // cH=prevod(Tv*Wref*Fmag/Iref/Ls*Thetaref,15); |
---|
176 | cH=prevod(Tv*Wref*Fmag/Iref/Ls,15); |
---|
177 | // cI=prevod(kp*p*p*Tv*Fmag*Iref/J/Wref*Thetaref); |
---|
178 | |
---|
179 | /* Init matrix PSI with permanently constant terms */ |
---|
180 | PSI[0]=cA; |
---|
181 | PSI[5]=PSI[0]; |
---|
182 | PSI[10]=0x7FFF; |
---|
183 | PSI[14]=cG; |
---|
184 | PSI[15]=0x7FFF; |
---|
185 | |
---|
186 | P_est[0]=0x7FFF; |
---|
187 | P_est[5]=0x7FFF; |
---|
188 | P_est[10]=0x7FFF; |
---|
189 | P_est[15]=0x7FFF; |
---|
190 | } |
---|
191 | |
---|
192 | |
---|
193 | void EKF_UDfix::set_parameters ( const shared_ptr<diffbifn> &pfxu0, const shared_ptr<diffbifn> &phxu0, const mat Q0, const vec R0 ) { |
---|
194 | pfxu = pfxu0; |
---|
195 | phxu = phxu0; |
---|
196 | |
---|
197 | set_dim ( pfxu0->_dimx() ); |
---|
198 | dimy = phxu0->dimension(); |
---|
199 | dimc = pfxu0->_dimu(); |
---|
200 | |
---|
201 | vec &_mu = est._mu(); |
---|
202 | // if mu is not set, set it to zeros, just for constant terms of A and C |
---|
203 | if ( _mu.length() != dimension() ) _mu = zeros ( dimension() ); |
---|
204 | A = zeros ( dimension(), dimension() ); |
---|
205 | C = zeros ( dimy, dimension() ); |
---|
206 | |
---|
207 | //initialize matrices A C, later, these will be only updated! |
---|
208 | pfxu->dfdx_cond ( _mu, zeros ( dimc ), A, true ); |
---|
209 | // pfxu->dfdu_cond ( *_mu,zeros ( dimu ),B,true ); |
---|
210 | phxu->dfdx_cond ( _mu, zeros ( dimc ), C, true ); |
---|
211 | // phxu->dfdu_cond ( *_mu,zeros ( dimu ),D,true ); |
---|
212 | |
---|
213 | R = R0; |
---|
214 | Q = Q0; |
---|
215 | |
---|
216 | // |
---|
217 | } |
---|
218 | // aux fnc |
---|
219 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref){ |
---|
220 | mat P= U*diag(D)*U.T(); |
---|
221 | mat T = diag(1.0/(xref)); |
---|
222 | mat Pf = T*P*T; |
---|
223 | |
---|
224 | ldmat Pld(Pf); |
---|
225 | |
---|
226 | mat Ut=Pld._L().T()*(1<<15); // U is in q15 -- diagonal is 0!!! |
---|
227 | Uf=round_i(Ut); |
---|
228 | Df=round_i(Pld._D()*(1<<15)); |
---|
229 | ivec zer=find(Df==0); |
---|
230 | for(int i=0; i<zer.length(); i++) Df(zer(i))=1; |
---|
231 | } |
---|
232 | |
---|
233 | |
---|
234 | void EKF_UDfix::bayes ( const vec &yt, const vec &cond ) { |
---|
235 | //preparatory |
---|
236 | vec &_mu=est._mu(); |
---|
237 | const vec &u=cond; |
---|
238 | int dim = dimension(); |
---|
239 | ///// !!!!!!!!!!!!!!!! |
---|
240 | U = est._R()._L().T(); |
---|
241 | D = est._R()._D(); |
---|
242 | |
---|
243 | //////////// |
---|
244 | |
---|
245 | pfxu->dfdx_cond ( _mu, u, A, false ); //update A by a derivative of fx |
---|
246 | phxu->dfdx_cond ( _mu, u, C, false ); //update A by a derivative of fx |
---|
247 | |
---|
248 | mat PhiU = A*U; |
---|
249 | |
---|
250 | ////// |
---|
251 | /* vec xref(4); |
---|
252 | xref(0)= 30.0*1.4142; |
---|
253 | xref(1)= 30.0*1.4142; |
---|
254 | xref(2)= 6.283185*200.; |
---|
255 | xref(3) = 3.141593;*/ |
---|
256 | //xref(4) = 34.0; |
---|
257 | |
---|
258 | |
---|
259 | vec Din = D; |
---|
260 | int i,j,k; |
---|
261 | double sigma; |
---|
262 | mat G = eye(dim); |
---|
263 | //////// thorton |
---|
264 | |
---|
265 | //move mean; |
---|
266 | _mu = pfxu->eval(_mu,u); |
---|
267 | |
---|
268 | for (i=dim-1; i>=0;i--){ |
---|
269 | sigma = 0.0; |
---|
270 | for (j=0; j<dim; j++) { |
---|
271 | sigma += PhiU(i,j)*PhiU(i,j) *Din(j); |
---|
272 | sigma += G(i,j)*G(i,j) * Q(j,j); |
---|
273 | } |
---|
274 | |
---|
275 | /* double sigma2= 0.0; |
---|
276 | for (j=0; j<dim; j++) { |
---|
277 | sigma2 += PhiU(i,j)*PhiU(i,j) *Din(j); |
---|
278 | } |
---|
279 | sigma2 +=Q(i,i);//*G(i,i)=1.0 |
---|
280 | for (j=i+1; j<dim; j++) { |
---|
281 | sigma2 += G(i,j)*G(i,j) * Q(j,j); |
---|
282 | }*/ |
---|
283 | D(i) = sigma; |
---|
284 | |
---|
285 | /* UDtof(U,D,Utf,Dtf,xref); |
---|
286 | cout << "d=sig"<<endl; |
---|
287 | cout << Dtf << endl; |
---|
288 | */ |
---|
289 | for (j=0;j<i;j++){ |
---|
290 | // cout << i << "," << j << endl; |
---|
291 | sigma = 0.0; |
---|
292 | for (k=0;k<dim;k++){ |
---|
293 | sigma += PhiU(i,k)*Din(k)*PhiU(j,k); |
---|
294 | } |
---|
295 | for (k=0;k<dim;k++){ |
---|
296 | sigma += G(i,k)*Q(k,k)*G(j,k); |
---|
297 | } |
---|
298 | // |
---|
299 | U(j,i) = sigma/D(i); |
---|
300 | |
---|
301 | /* cout << "U=sig/D"<<endl; |
---|
302 | UDtof(U,D,Utf,Dtf,xref); |
---|
303 | cout << Utf << endl << Dtf << endl; |
---|
304 | cout << G << endl << Din << endl<<endl;*/ |
---|
305 | |
---|
306 | for (k=0;k<dim;k++){ |
---|
307 | PhiU(j,k) = PhiU(j,k) - U(j,i)*PhiU(i,k); |
---|
308 | } |
---|
309 | for (k=0;k<dim;k++){ |
---|
310 | G(j,k) = G(j,k) - U(j,i)*G(i,k); |
---|
311 | } |
---|
312 | |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | // bierman |
---|
317 | |
---|
318 | double dz,alpha,gamma,beta,lambda; |
---|
319 | vec a; |
---|
320 | vec b; |
---|
321 | vec yp = phxu->eval(_mu,u); |
---|
322 | vec xp=_mu; // used in bierman |
---|
323 | |
---|
324 | |
---|
325 | for (int iy=0; iy<dimy; iy++){ |
---|
326 | a = U.T()*C.get_row(iy); // a is not modified, but |
---|
327 | b = elem_mult(D,a); // b is modified to become unscaled Kalman gain. |
---|
328 | dz = yt(iy) - yp(iy); |
---|
329 | |
---|
330 | alpha = R(iy); |
---|
331 | gamma = 1/alpha; |
---|
332 | for (j=0;j<dim;j++){ |
---|
333 | beta = alpha; |
---|
334 | alpha = alpha + a(j)*b(j); |
---|
335 | lambda = -a(j)*gamma; |
---|
336 | gamma = 1.0/alpha; |
---|
337 | D(j) = beta*gamma*D(j); |
---|
338 | |
---|
339 | // cout << "a: " << alpha << "g: " << gamma << endl; |
---|
340 | for (i=0;i<j;i++){ |
---|
341 | beta = U(i,j); |
---|
342 | U(i,j) = beta + b(i)*lambda; |
---|
343 | b(i) = b(i) + b(j)*beta; |
---|
344 | } |
---|
345 | } |
---|
346 | double dzs = gamma*dz; // apply scaling to innovations |
---|
347 | _mu = _mu + dzs*b; // multiply by unscaled Kalman gain |
---|
348 | //cout << "Ub: " << U << endl; |
---|
349 | //cout << "Db: " << D << endl <<endl; |
---|
350 | |
---|
351 | } |
---|
352 | |
---|
353 | |
---|
354 | ///// |
---|
355 | est._R().__L()=U.T(); |
---|
356 | est._R().__D()=D; |
---|
357 | |
---|
358 | if ( evalll == true ) { //likelihood of observation y |
---|
359 | } |
---|
360 | } |
---|
361 | |
---|
362 | void EKF_UDfix::from_setting ( const Setting &set ) { |
---|
363 | BM::from_setting ( set ); |
---|
364 | shared_ptr<diffbifn> IM = UI::build<diffbifn> ( set, "IM", UI::compulsory ); |
---|
365 | shared_ptr<diffbifn> OM = UI::build<diffbifn> ( set, "OM", UI::compulsory ); |
---|
366 | |
---|
367 | //statistics |
---|
368 | int dim = IM->dimension(); |
---|
369 | vec mu0; |
---|
370 | if ( !UI::get ( mu0, set, "mu0" ) ) |
---|
371 | mu0 = zeros ( dim ); |
---|
372 | |
---|
373 | mat P0; |
---|
374 | vec dP0; |
---|
375 | if ( UI::get ( dP0, set, "dP0" ) ) |
---|
376 | P0 = diag ( dP0 ); |
---|
377 | else if ( !UI::get ( P0, set, "P0" ) ) |
---|
378 | P0 = eye ( dim ); |
---|
379 | |
---|
380 | est._mu()=mu0; |
---|
381 | est._R()=ldmat(P0); |
---|
382 | |
---|
383 | //parameters |
---|
384 | vec dQ, dR; |
---|
385 | UI::get ( dQ, set, "dQ", UI::compulsory ); |
---|
386 | UI::get ( dR, set, "dR", UI::compulsory ); |
---|
387 | set_parameters ( IM, OM, diag ( dQ ), dR ); |
---|
388 | |
---|
389 | UI::get(log_level, set, "log_level", UI::optional); |
---|
390 | } |
---|
391 | |
---|
392 | |
---|
393 | void EKFfixedUD::bayes(const itpp::vec& yt, const itpp::vec& ut) |
---|
394 | { |
---|
395 | ekf(ut[0],ut[1],yt[0],yt[1]); |
---|
396 | } |
---|
397 | |
---|
398 | |
---|
399 | void EKFfixedUD::ekf(double ux, double uy, double isxd, double isyd) |
---|
400 | { |
---|
401 | // vypocet napeti v systemu (x,y) |
---|
402 | int uf[2]; |
---|
403 | uf[0]=prevod(ux/Uref,Qm); |
---|
404 | uf[1]=prevod(uy/Uref,Qm); |
---|
405 | |
---|
406 | int Y_mes[2]; |
---|
407 | // zadani mereni |
---|
408 | Y_mes[0]=prevod(isxd/Iref,Qm); |
---|
409 | Y_mes[1]=prevod(isyd/Iref,Qm); |
---|
410 | |
---|
411 | ////// vlastni rutina EKF -- ///////////////////////// |
---|
412 | int t_sin,t_cos, tmp; |
---|
413 | |
---|
414 | // implementace v PC |
---|
415 | /* t_sin=prevod(sin(Thetaref*x_est[3]/32768.),15); |
---|
416 | t_cos=prevod(cos(Thetaref*x_est[3]/32768.),15);*/ |
---|
417 | t_sin=prevod(sin(Thetaref*x_est[3]/32768.),15); |
---|
418 | t_cos=prevod(cos(Thetaref*x_est[3]/32768.),15); |
---|
419 | |
---|
420 | tmp=((long)cB*x_est[2])>>15; |
---|
421 | x_est[0]=((long)cA*x_est[0]+(long)tmp*t_sin+(long)cC*(uf[0]<<2))>>15; |
---|
422 | x_est[1]=((long)cA*x_est[1]-(long)tmp*t_cos+(long)cC*(uf[1]<<2))>>15; |
---|
423 | x_est[2]=x_est[2]; |
---|
424 | x_est[3]=(((long)x_est[3]<<15)+(long)cG*x_est[2])>>15; |
---|
425 | |
---|
426 | if(x_est[3]>(1<<15)) x_est[3]-=2*(1<<15); |
---|
427 | if(x_est[3]<-(1<<15)) x_est[3]+=2*(1<<15); |
---|
428 | |
---|
429 | //void EKFfixed::update_psi(void) |
---|
430 | { |
---|
431 | PSI[2]=((long)cB*t_sin)>>15; |
---|
432 | tmp=((long)cB*x_est[2])>>15; |
---|
433 | PSI[3]=((long)tmp*t_cos)>>15; |
---|
434 | PSI[6]=-((long)cB*t_cos)>>15; |
---|
435 | PSI[7]=((long)tmp*t_sin)>>15; |
---|
436 | } |
---|
437 | { |
---|
438 | ivec Ad(PSI,16); |
---|
439 | log_level.store(logA,get_from_ivec(Ad)); |
---|
440 | } |
---|
441 | |
---|
442 | ///////// end of copy /////////////// |
---|
443 | mmultAU(PSI,Uf,PSIU,4,4); |
---|
444 | //thorton(int *U, int *D, int *PSIU, int *Q, int *G, int *Dold, unsigned int dimx); |
---|
445 | thorton(Uf,Df,PSIU,Q,G,Dfold,4); |
---|
446 | |
---|
447 | { |
---|
448 | ivec Ud(Uf,16); |
---|
449 | log_level.store(logU,get_from_ivec(Ud)); |
---|
450 | } |
---|
451 | { |
---|
452 | ivec Gd(G,16); |
---|
453 | log_level.store(logG,get_from_ivec(Gd)); |
---|
454 | } |
---|
455 | |
---|
456 | |
---|
457 | int difz[2]; |
---|
458 | difz[0]=(Y_mes[0]<<2)-x_est[0]; // Y_mes in q13!! |
---|
459 | difz[1]=(Y_mes[1]<<2)-x_est[1]; |
---|
460 | |
---|
461 | { |
---|
462 | vec dd(4);dd(0)=Y_mes[0];dd(1)=Y_mes[1]; dd(2)=difz[0]; dd(3)=difz[1]; |
---|
463 | log_level.store(logD,dd); |
---|
464 | } |
---|
465 | |
---|
466 | //bierman(int *difz, int *xp, int *U, int *D, int *R, unsigned int dimy, unsigned int dimx ); |
---|
467 | int dR[2];dR[0]=R[0];dR[1]=R[3]; |
---|
468 | bierman(difz,x_est,Uf,Df,dR,2,4); |
---|
469 | |
---|
470 | // navrat estimovanych hodnot regulatoru |
---|
471 | vec& mu = E._mu(); |
---|
472 | (mu)(0)=zprevod(x_est[0],15)*Iref; |
---|
473 | (mu)(1)=zprevod(x_est[1],15)*Iref; |
---|
474 | (mu)(2)=zprevod(x_est[2],15)*Wref; |
---|
475 | (mu)(3)=zprevod(x_est[3],15)*Thetaref; |
---|
476 | |
---|
477 | // mat T=diag(concat(vec_2(Iref,Iref), vec_2(Wref,Thetaref))); |
---|
478 | } |
---|
479 | |
---|
480 | void EKFfixedUD::init_ekf(double Tv) |
---|
481 | { |
---|
482 | // Tuning of matrix Q |
---|
483 | Q[0]=prevod(.01,15); // 0.05 |
---|
484 | Q[5]=Q[0]; |
---|
485 | Q[10]=prevod(0.0001,15); // 1e-3 |
---|
486 | Q[15]=prevod(0.0001,15); // 1e-3 |
---|
487 | |
---|
488 | Uf[0]=0x7FFF; // 0.05 |
---|
489 | Uf[1]=Uf[2]=Uf[3]=Uf[4]=0; |
---|
490 | Uf[5]=0x7FFF; |
---|
491 | Uf[6]=Uf[6]=Uf[8]=Uf[9]=0; |
---|
492 | Uf[10]=0x7FFF; // 1e-3 |
---|
493 | Uf[11]=Uf[12]=Uf[13]=Uf[4]=0; |
---|
494 | Uf[15]=0x7FFF; // 1e-3 |
---|
495 | |
---|
496 | Df[0]=0x7FFF; |
---|
497 | Df[1]=0x7FFF; |
---|
498 | Df[2]=0x7FFF; |
---|
499 | Df[3]=0x7FFF; |
---|
500 | |
---|
501 | // Tuning of matrix R |
---|
502 | R[0]=prevod(0.05,15); // 0.05 |
---|
503 | R[3]=R[0]; |
---|
504 | |
---|
505 | // Motor model parameters |
---|
506 | cA=prevod(1-Tv*Rs/Ls,15); |
---|
507 | cB=prevod(Tv*Wref*Fmag/Iref/Ls,15); |
---|
508 | cC=prevod(Tv/Ls/Iref*Uref,15); |
---|
509 | // cD=prevod(1-Tv*Bf/J,15); |
---|
510 | // cE=prevod(kp*p*p*Tv*Fmag*Iref/J/Wref,15); |
---|
511 | // cF=prevod(p*Tv*Mref/J/Wref,15); |
---|
512 | cG=prevod(Tv*Wref/Thetaref,15); //no *4!! |
---|
513 | //cH=prevod(Tv*Wref*Fmag/Iref/Ls*Thetaref,15); |
---|
514 | // cH=prevod(Tv*Wref*Fmag/Iref/Ls,15); <<< use cB instead |
---|
515 | // cI=prevod(kp*p*p*Tv*Fmag*Iref/J/Wref*Thetaref); |
---|
516 | |
---|
517 | /* Init matrix PSI with permanently constant terms */ |
---|
518 | PSI[0]=cA; |
---|
519 | PSI[5]=PSI[0]; |
---|
520 | PSI[10]=0x7FFF; |
---|
521 | PSI[14]=cG; |
---|
522 | PSI[15]=0x7FFF; |
---|
523 | |
---|
524 | //////////////////////// ================= |
---|
525 | ///// TEST thorton vs. thorton_fast |
---|
526 | |
---|
527 | /* int Ut[16]={0x7FFF, 100, 200, 300, 0, 0x7FFF, 500, 600, 0,0,0x7FFF, 800, 0,0,0, 0x7FFF}; |
---|
528 | int Dt[4]={100,200,300,400}; |
---|
529 | int PSIu[16] = {100, 200,300, 400 , 500, 600,700,800, 900,1000,1100,1200, 1300,1400,1500,1600}; |
---|
530 | int Dold[4]; |
---|
531 | |
---|
532 | thorton(Ut,Dt,PSIu,Q,G,Dold,4); |
---|
533 | int Ut2[16]={0x7FFF, 100, 200, 300, 0, 0x7FFF, 500, 600, 0,0,0x7FFF, 800, 0,0,0, 0x7FFF}; |
---|
534 | int Dt2[4]={100,200,300,400}; |
---|
535 | int PSIu2[16] = {100, 200,300, 400 , 500, 600,700,800, 900,1000,1100,1200, 1300,1400,1500,1600}; |
---|
536 | thorton_fast(Ut2,Dt2,PSIu2,Q,G,Dold,4); |
---|
537 | cout<< Q<<endl;*/ |
---|
538 | } |
---|