1 | /*! |
---|
2 | \file |
---|
3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #ifndef EKFfix_H |
---|
14 | #define EKFfix_H |
---|
15 | |
---|
16 | |
---|
17 | #include <estim/kalman.h> |
---|
18 | #include "fixed.h" |
---|
19 | #include "matrix.h" |
---|
20 | #include "matrix_vs.h" |
---|
21 | #include "reference_Q15.h" |
---|
22 | #include "parametry_motoru.h" |
---|
23 | #include "mpf_double.h" |
---|
24 | #include "fast_exp.h" |
---|
25 | #include "ekf_mm.h" |
---|
26 | #include "qmath.h" |
---|
27 | |
---|
28 | using namespace bdm; |
---|
29 | |
---|
30 | double minQ(double Q); |
---|
31 | |
---|
32 | void mat_to_int16(const imat &M, int16 *I); |
---|
33 | void vec_to_int16(const ivec &v, int16 *I); |
---|
34 | void int16_to_mat(int16 *I, imat &M, int rows, int cols); |
---|
35 | void int16_to_vec(int16 *I, ivec &v, int len); |
---|
36 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
---|
37 | |
---|
38 | |
---|
39 | //! EKF for testing q44 |
---|
40 | class EKFtest: public EKF_UD{ |
---|
41 | void bayes ( const vec &yt, const vec &cond ) { |
---|
42 | EKF_UD::bayes(yt,cond); |
---|
43 | vec D = prior()._R()._D(); |
---|
44 | |
---|
45 | if (D(3)>10) D(3) = 10; |
---|
46 | |
---|
47 | prior()._R().__D()=D; |
---|
48 | } |
---|
49 | }; |
---|
50 | UIREGISTER(EKFtest); |
---|
51 | |
---|
52 | |
---|
53 | class EKFscale: public EKFCh{ |
---|
54 | LOG_LEVEL(EKFscale, logCh, logA, logC); |
---|
55 | public: |
---|
56 | mat Tx; |
---|
57 | mat Ty; |
---|
58 | |
---|
59 | void from_setting ( const Setting &set ){ |
---|
60 | EKFCh::from_setting(set); |
---|
61 | vec v; |
---|
62 | UI::get(v, set, "xmax", UI::compulsory); |
---|
63 | Tx = diag(1./v); |
---|
64 | UI::get(v, set, "ymax", UI::compulsory); |
---|
65 | Ty = diag(1./v); |
---|
66 | |
---|
67 | UI::get(log_level, set, "log_level", UI::optional); |
---|
68 | }; |
---|
69 | |
---|
70 | void log_register(logger &L, const string &prefix){ |
---|
71 | BM::log_register ( L, prefix ); |
---|
72 | |
---|
73 | L.add_vector ( log_level, logCh, RV ("Ch", dimension()*dimension() ), prefix ); |
---|
74 | L.add_vector ( log_level, logA, RV ("A", dimension()*dimension() ), prefix ); |
---|
75 | L.add_vector ( log_level, logC, RV ("C", dimensiony()*dimension() ), prefix ); |
---|
76 | }; |
---|
77 | |
---|
78 | void log_write() const{ |
---|
79 | BM::log_write(); |
---|
80 | if ( log_level[logCh] ) { |
---|
81 | mat Chsc=Tx*(est._R()._Ch()); |
---|
82 | vec v(Chsc._data(), dimension()*dimension()); |
---|
83 | if (v(0)<0) |
---|
84 | v= -v; |
---|
85 | log_level.store( logCh, round(v*32767)); |
---|
86 | } |
---|
87 | if (log_level[logA]){ |
---|
88 | mat Asc = Tx*A*inv(Tx); |
---|
89 | vec v(Asc._data(), dimension()*dimension()); |
---|
90 | log_level.store( logA, round(v*32767)); |
---|
91 | } |
---|
92 | if (log_level[logC]){ |
---|
93 | mat Csc = Ty*C*inv(Tx); |
---|
94 | vec v(Csc._data(), dimensiony()*dimension()); |
---|
95 | log_level.store( logC, round(v*32767)); |
---|
96 | } |
---|
97 | } |
---|
98 | |
---|
99 | }; |
---|
100 | UIREGISTER(EKFscale); |
---|
101 | |
---|
102 | /*! |
---|
103 | \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
104 | |
---|
105 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
106 | */ |
---|
107 | class EKFfixedUD : public BM { |
---|
108 | public: |
---|
109 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
---|
110 | |
---|
111 | void init_ekf(double Tv); |
---|
112 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
113 | |
---|
114 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
115 | int16 Q[16]; /* matrix [4,4] */ |
---|
116 | int16 R[4]; /* matrix [2,2] */ |
---|
117 | |
---|
118 | int16 x_est[4]; /* estimate and prediction */ |
---|
119 | |
---|
120 | int16 PSI[16]; /* matrix [4,4] */ |
---|
121 | int16 PSIU[16]; /* matrix PIS*U, [4,4] */ |
---|
122 | |
---|
123 | int16 Uf[16]; // upper triangular of covariance (inplace) |
---|
124 | int16 Df[4]; // diagonal covariance |
---|
125 | int16 Dfold[4]; // temp of D |
---|
126 | int16 G[16]; // temp for bierman |
---|
127 | |
---|
128 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
129 | |
---|
130 | enorm<fsqmat> E; |
---|
131 | mat Ry; |
---|
132 | |
---|
133 | public: |
---|
134 | //! Default constructor |
---|
135 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
---|
136 | int16 i; |
---|
137 | for(i=0;i<16;i++){Q[i]=0;} |
---|
138 | for(i=0;i<4;i++){R[i]=0;} |
---|
139 | |
---|
140 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
141 | for(i=0;i<16;i++){Uf[i]=0;} |
---|
142 | for(i=0;i<4;i++){Df[i]=0;} |
---|
143 | for(i=0;i<16;i++){G[i]=0;} |
---|
144 | for(i=0;i<4;i++){Dfold[i]=0;} |
---|
145 | |
---|
146 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
147 | |
---|
148 | set_dim(4); |
---|
149 | dimy = 2; |
---|
150 | dimc = 2; |
---|
151 | E._mu()=zeros(4); |
---|
152 | E._R()=zeros(4,4); |
---|
153 | init_ekf(0.000125); |
---|
154 | }; |
---|
155 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
156 | void bayes ( const vec &yt, const vec &ut ); |
---|
157 | //!dummy! |
---|
158 | const epdf& posterior() const {return E;}; |
---|
159 | void log_register(logger &L, const string &prefix){ |
---|
160 | BM::log_register ( L, prefix ); |
---|
161 | |
---|
162 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
---|
163 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
---|
164 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
---|
165 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
166 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
167 | |
---|
168 | }; |
---|
169 | //void from_setting(); |
---|
170 | }; |
---|
171 | |
---|
172 | UIREGISTER(EKFfixedUD); |
---|
173 | |
---|
174 | /*! |
---|
175 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
176 | * |
---|
177 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
178 | */ |
---|
179 | class EKFfixedUD2 : public BM { |
---|
180 | public: |
---|
181 | LOG_LEVEL(EKFfixedUD2,logU, logG, logD, logA, logC, logP); |
---|
182 | |
---|
183 | void init_ekf2(double Tv); |
---|
184 | void ekf2(double ux, double uy, double isxd, double isyd); |
---|
185 | |
---|
186 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
187 | int16 Q[4]; /* matrix [4,4] */ |
---|
188 | int16 R[4]; /* matrix [2,2] */ |
---|
189 | |
---|
190 | int16 x_est[2]; /* estimate and prediction */ |
---|
191 | int16 y_est[2]; /* estimate and prediction */ |
---|
192 | int16 y_old[2]; /* estimate and prediction */ |
---|
193 | |
---|
194 | int16 PSI[4]; /* matrix [4,4] */ |
---|
195 | int16 PSIU[4]; /* matrix PIS*U, [4,4] */ |
---|
196 | int16 C[4]; /* matrix [4,4] */ |
---|
197 | |
---|
198 | int16 Uf[4]; // upper triangular of covariance (inplace) |
---|
199 | int16 Df[2]; // diagonal covariance |
---|
200 | int16 Dfold[2]; // temp of D |
---|
201 | int16 G[4]; // temp for bierman |
---|
202 | |
---|
203 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
204 | |
---|
205 | enorm<fsqmat> E; |
---|
206 | mat Ry; |
---|
207 | |
---|
208 | public: |
---|
209 | //! Default constructor |
---|
210 | EKFfixedUD2 ():BM(),E(),Ry(2,2){ |
---|
211 | int16 i; |
---|
212 | for(i=0;i<4;i++){Q[i]=0;} |
---|
213 | for(i=0;i<4;i++){R[i]=0;} |
---|
214 | |
---|
215 | for(i=0;i<2;i++){x_est[i]=0;} |
---|
216 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
217 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
218 | for(i=0;i<4;i++){Uf[i]=0;} |
---|
219 | for(i=0;i<2;i++){Df[i]=0;} |
---|
220 | for(i=0;i<4;i++){G[i]=0;} |
---|
221 | for(i=0;i<2;i++){Dfold[i]=0;} |
---|
222 | |
---|
223 | for(i=0;i<4;i++){PSI[i]=0;} |
---|
224 | for(i=0;i<4;i++){C[i]=0;} |
---|
225 | |
---|
226 | set_dim(2); |
---|
227 | dimc = 2; |
---|
228 | dimy = 2; |
---|
229 | E._mu()=zeros(2); |
---|
230 | E._R()=zeros(2,2); |
---|
231 | init_ekf2(0.000125); |
---|
232 | }; |
---|
233 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
234 | void bayes ( const vec &yt, const vec &ut ); |
---|
235 | //!dummy! |
---|
236 | const epdf& posterior() const {return E;}; |
---|
237 | void log_register(logger &L, const string &prefix){ |
---|
238 | BM::log_register ( L, prefix ); |
---|
239 | |
---|
240 | L.add_vector ( log_level, logG, RV("G2",4), prefix ); |
---|
241 | L.add_vector ( log_level, logU, RV ("U2", 4 ), prefix ); |
---|
242 | L.add_vector ( log_level, logD, RV ("D2", 2 ), prefix ); |
---|
243 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
---|
244 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
---|
245 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
---|
246 | |
---|
247 | }; |
---|
248 | //void from_setting(); |
---|
249 | }; |
---|
250 | |
---|
251 | UIREGISTER(EKFfixedUD2); |
---|
252 | |
---|
253 | /*! |
---|
254 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
255 | * |
---|
256 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
257 | */ |
---|
258 | class EKFfixedUD3 : public BM { |
---|
259 | public: |
---|
260 | LOG_LEVEL(EKFfixedUD3,logU, logG, logD, logA, logC, logP); |
---|
261 | |
---|
262 | void init_ekf3(double Tv); |
---|
263 | void ekf3(double ux, double uy, double isxd, double isyd); |
---|
264 | |
---|
265 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
266 | int16 Q[9]; /* matrix [4,4] */ |
---|
267 | int16 R[4]; /* matrix [2,2] */ |
---|
268 | |
---|
269 | int16 x_est[3]; /* estimate and prediction */ |
---|
270 | int16 y_est[2]; /* estimate and prediction */ |
---|
271 | int16 y_old[2]; /* estimate and prediction */ |
---|
272 | |
---|
273 | int16 PSI[9]; /* matrix [4,4] */ |
---|
274 | int16 PSIU[9]; /* matrix PIS*U, [4,4] */ |
---|
275 | int16 C[6]; /* matrix [4,4] */ |
---|
276 | |
---|
277 | int16 Uf[9]; // upper triangular of covariance (inplace) |
---|
278 | int16 Df[3]; // diagonal covariance |
---|
279 | int16 Dfold[3]; // temp of D |
---|
280 | int16 G[9]; // temp for bierman |
---|
281 | |
---|
282 | int16 cA, cB, cC, cG, cF, cH; // cD, cE, cF, cI ... nepouzivane |
---|
283 | |
---|
284 | enorm<fsqmat> E; |
---|
285 | mat Ry; |
---|
286 | |
---|
287 | public: |
---|
288 | //! Default constructor |
---|
289 | EKFfixedUD3 ():BM(),E(),Ry(2,2){ |
---|
290 | int16 i; |
---|
291 | for(i=0;i<9;i++){Q[i]=0;} |
---|
292 | for(i=0;i<4;i++){R[i]=0;} |
---|
293 | |
---|
294 | for(i=0;i<3;i++){x_est[i]=0;} |
---|
295 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
296 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
297 | for(i=0;i<9;i++){Uf[i]=0;} |
---|
298 | for(i=0;i<3;i++){Df[i]=0;} |
---|
299 | for(i=0;i<4;i++){G[i]=0;} |
---|
300 | for(i=0;i<3;i++){Dfold[i]=0;} |
---|
301 | |
---|
302 | for(i=0;i<9;i++){PSI[i]=0;} |
---|
303 | for(i=0;i<6;i++){C[i]=0;} |
---|
304 | |
---|
305 | set_dim(3); |
---|
306 | dimc = 2; |
---|
307 | dimy = 2; |
---|
308 | E._mu()=zeros(3); |
---|
309 | E._R()=zeros(3,3); |
---|
310 | init_ekf3(0.000125); |
---|
311 | }; |
---|
312 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
313 | void bayes ( const vec &yt, const vec &ut ); |
---|
314 | //!dummy! |
---|
315 | const epdf& posterior() const {return E;}; |
---|
316 | void log_register(logger &L, const string &prefix){ |
---|
317 | BM::log_register ( L, prefix ); |
---|
318 | }; |
---|
319 | //void from_setting(); |
---|
320 | }; |
---|
321 | |
---|
322 | UIREGISTER(EKFfixedUD3); |
---|
323 | |
---|
324 | /*! |
---|
325 | * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic |
---|
326 | * |
---|
327 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
328 | */ |
---|
329 | class EKFfixedCh : public BM { |
---|
330 | public: |
---|
331 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
---|
332 | |
---|
333 | void init_ekf(double Tv); |
---|
334 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
335 | |
---|
336 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
337 | int16 Q[16]; /* matrix [4,4] */ |
---|
338 | int16 R[4]; /* matrix [2,2] */ |
---|
339 | |
---|
340 | int16 x_est[4]; /* estimate and prediction */ |
---|
341 | |
---|
342 | int16 PSI[16]; /* matrix [4,4] */ |
---|
343 | int16 PSICh[16]; /* matrix PIS*U, [4,4] */ |
---|
344 | |
---|
345 | int16 Chf[16]; // upper triangular of covariance (inplace) |
---|
346 | |
---|
347 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
348 | |
---|
349 | enorm<chmat> E; |
---|
350 | mat Ry; |
---|
351 | |
---|
352 | public: |
---|
353 | //! Default constructor |
---|
354 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
---|
355 | int16 i; |
---|
356 | for(i=0;i<16;i++){Q[i]=0;} |
---|
357 | for(i=0;i<4;i++){R[i]=0;} |
---|
358 | |
---|
359 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
360 | for(i=0;i<16;i++){Chf[i]=0;} |
---|
361 | |
---|
362 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
363 | |
---|
364 | set_dim(4); |
---|
365 | dimc = 2; |
---|
366 | dimy =2; |
---|
367 | E._mu()=zeros(4); |
---|
368 | E._R()=zeros(4,4); |
---|
369 | init_ekf(0.000125); |
---|
370 | }; |
---|
371 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
372 | void bayes ( const vec &yt, const vec &ut ); |
---|
373 | //!dummy! |
---|
374 | const epdf& posterior() const {return E;}; |
---|
375 | void log_register(logger &L, const string &prefix){ |
---|
376 | BM::log_register ( L, prefix ); |
---|
377 | |
---|
378 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
---|
379 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
380 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
381 | }; |
---|
382 | //void from_setting(); |
---|
383 | }; |
---|
384 | |
---|
385 | UIREGISTER(EKFfixedCh); |
---|
386 | |
---|
387 | /*! |
---|
388 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
389 | * |
---|
390 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
391 | */ |
---|
392 | class EKFfixedCh2 : public BM { |
---|
393 | public: |
---|
394 | LOG_LEVEL(EKFfixedCh2,logCh, logA, logC, logP, logDet, logRem); |
---|
395 | |
---|
396 | void init_ekf2(double Tv); |
---|
397 | void ekf2(double ux, double uy, double isxd, double isyd); |
---|
398 | |
---|
399 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
400 | int16 Q[4]; /* matrix [4,4] */ |
---|
401 | int16 R[4]; /* matrix [2,2] */ |
---|
402 | |
---|
403 | int16 x_est[2]; /* estimate and prediction */ |
---|
404 | int16 y_est[2]; /* estimate and prediction */ |
---|
405 | int16 y_old[2]; /* estimate and prediction */ |
---|
406 | |
---|
407 | int16 PSI[4]; /* matrix [4,4] */ |
---|
408 | int16 PSICh[4]; /* matrix PIS*U, [4,4] */ |
---|
409 | int16 C[4]; /* matrix [4,4] */ |
---|
410 | |
---|
411 | int16 Chf[4]; // upper triangular of covariance (inplace) |
---|
412 | |
---|
413 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
414 | |
---|
415 | enorm<fsqmat> E; |
---|
416 | mat Ry; |
---|
417 | |
---|
418 | public: |
---|
419 | //! Default constructor |
---|
420 | EKFfixedCh2 ():BM(),E(),Ry(2,2){ |
---|
421 | int16 i; |
---|
422 | for(i=0;i<4;i++){Q[i]=0;} |
---|
423 | for(i=0;i<4;i++){R[i]=0;} |
---|
424 | |
---|
425 | for(i=0;i<2;i++){x_est[i]=0;} |
---|
426 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
427 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
428 | for(i=0;i<4;i++){Chf[i]=0;} |
---|
429 | |
---|
430 | for(i=0;i<4;i++){PSI[i]=0;} |
---|
431 | for(i=0;i<4;i++){C[i]=0;} |
---|
432 | |
---|
433 | set_dim(2); |
---|
434 | dimc = 2; |
---|
435 | dimy = 2; |
---|
436 | E._mu()=zeros(2); |
---|
437 | E._R()=zeros(2,2); |
---|
438 | init_ekf2(0.000125); |
---|
439 | }; |
---|
440 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
441 | void bayes ( const vec &yt, const vec &ut ); |
---|
442 | //!dummy! |
---|
443 | const epdf& posterior() const {return E;}; |
---|
444 | void log_register(logger &L, const string &prefix){ |
---|
445 | BM::log_register ( L, prefix ); |
---|
446 | |
---|
447 | L.add_vector ( log_level, logCh, RV ("Ch2", 4 ), prefix ); |
---|
448 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
---|
449 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
---|
450 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
---|
451 | L.add_vector ( log_level, logDet, RV ("Det", 1 ), prefix ); |
---|
452 | L.add_vector ( log_level, logRem, RV ("Rem", 1 ), prefix ); |
---|
453 | |
---|
454 | }; |
---|
455 | void from_setting ( const Setting &set ){ |
---|
456 | BM::from_setting(set); |
---|
457 | vec dQ,dR; |
---|
458 | UI::get ( dQ, set, "dQ", UI::optional ); |
---|
459 | UI::get ( dQ, set, "dR", UI::optional ); |
---|
460 | if (dQ.length()==2){ |
---|
461 | Q[0]=prevod(dQ[0],15); // 1e-3 |
---|
462 | Q[3]=prevod(dQ[1],15); // 1e-3 |
---|
463 | } |
---|
464 | if (dR.length()==2){ |
---|
465 | R[0]=prevod(dR[0],15); // 1e-3 |
---|
466 | R[3]=prevod(dR[1],15); // 1e-3 |
---|
467 | } |
---|
468 | } |
---|
469 | }; |
---|
470 | |
---|
471 | UIREGISTER(EKFfixedCh2); |
---|
472 | |
---|
473 | |
---|
474 | //! EKF for comparison of EKF_UD with its fixed-point16 implementation |
---|
475 | class EKF_UDfix : public BM { |
---|
476 | protected: |
---|
477 | //! logger |
---|
478 | LOG_LEVEL(EKF_UDfix,logU, logG); |
---|
479 | //! Internal Model f(x,u) |
---|
480 | shared_ptr<diffbifn> pfxu; |
---|
481 | |
---|
482 | //! Observation Model h(x,u) |
---|
483 | shared_ptr<diffbifn> phxu; |
---|
484 | |
---|
485 | //! U part |
---|
486 | mat U; |
---|
487 | //! D part |
---|
488 | vec D; |
---|
489 | |
---|
490 | mat A; |
---|
491 | mat C; |
---|
492 | mat Q; |
---|
493 | vec R; |
---|
494 | |
---|
495 | enorm<ldmat> est; |
---|
496 | |
---|
497 | |
---|
498 | public: |
---|
499 | |
---|
500 | //! copy constructor duplicated |
---|
501 | EKF_UDfix* _copy() const { |
---|
502 | return new EKF_UDfix(*this); |
---|
503 | } |
---|
504 | |
---|
505 | const enorm<ldmat>& posterior()const{return est;}; |
---|
506 | |
---|
507 | enorm<ldmat>& prior() { |
---|
508 | return const_cast<enorm<ldmat>&>(posterior()); |
---|
509 | } |
---|
510 | |
---|
511 | EKF_UDfix(){} |
---|
512 | |
---|
513 | |
---|
514 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
---|
515 | |
---|
516 | //! Set nonlinear functions for mean values and covariance matrices. |
---|
517 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
---|
518 | |
---|
519 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
520 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
---|
521 | |
---|
522 | void log_register ( bdm::logger& L, const string& prefix ){ |
---|
523 | BM::log_register ( L, prefix ); |
---|
524 | |
---|
525 | if ( log_level[logU] ) |
---|
526 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
---|
527 | if ( log_level[logG] ) |
---|
528 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
---|
529 | |
---|
530 | } |
---|
531 | /*! Create object from the following structure |
---|
532 | |
---|
533 | \code |
---|
534 | class = 'EKF_UD'; |
---|
535 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
536 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
537 | dQ = [...]; % vector containing diagonal of Q |
---|
538 | dR = [...]; % vector containing diagonal of R |
---|
539 | --- optional fields --- |
---|
540 | mu0 = [...]; % vector of statistics mu0 |
---|
541 | dP0 = [...]; % vector containing diagonal of P0 |
---|
542 | -- or -- |
---|
543 | P0 = [...]; % full matrix P0 |
---|
544 | --- inherited fields --- |
---|
545 | bdm::BM::from_setting |
---|
546 | \endcode |
---|
547 | If the optional fields are not given, they will be filled as follows: |
---|
548 | \code |
---|
549 | mu0 = [0,0,0,....]; % empty statistics |
---|
550 | P0 = eye( dim ); |
---|
551 | \endcode |
---|
552 | */ |
---|
553 | void from_setting ( const Setting &set ); |
---|
554 | |
---|
555 | void validate() {}; |
---|
556 | // TODO dodelat void to_setting( Setting &set ) const; |
---|
557 | |
---|
558 | }; |
---|
559 | UIREGISTER(EKF_UDfix); |
---|
560 | |
---|
561 | |
---|
562 | class MPF_pmsm_red:public BM{ |
---|
563 | double qom, qth, r; |
---|
564 | |
---|
565 | |
---|
566 | public: |
---|
567 | MPF_pmsm_red(){ |
---|
568 | dimy=2; |
---|
569 | dimc=2; |
---|
570 | qom=1e-1; |
---|
571 | qth=1e-6; |
---|
572 | r=1e-1; |
---|
573 | }; |
---|
574 | void bayes ( const vec &val, const vec &cond ) { |
---|
575 | /* const double &isa = val(0); |
---|
576 | const double &isb = val(1); |
---|
577 | const double &usa = cond(0); |
---|
578 | const double &usb = cond(1);*/ |
---|
579 | mpf_bayes((floatx)val(0),(floatx)val(1),(floatx)cond(0), (floatx)cond(1));//isa,isb,usa,usb); |
---|
580 | } |
---|
581 | |
---|
582 | class mp:public epdf{ |
---|
583 | LOG_LEVEL(mp,logth,logom); |
---|
584 | public: |
---|
585 | mp():epdf(){set_dim(3); log_level[logth]=true;log_level[logom]=true; |
---|
586 | } |
---|
587 | vec sample() const {return zeros(3);} |
---|
588 | double evallog(const vec &v) const {return 0.0;} |
---|
589 | vec mean() const {vec tmp(3); |
---|
590 | floatx es,ec,eo; |
---|
591 | mpf_mean(&es, &ec, &eo); |
---|
592 | tmp(0)=es;tmp(1)=ec;tmp(2)=eo; |
---|
593 | return tmp; |
---|
594 | } |
---|
595 | vec variance() const {return zeros(3);} |
---|
596 | void log_register ( bdm::logger& L, const string& prefix ) { |
---|
597 | epdf::log_register ( L, prefix ); |
---|
598 | if ( log_level[logth] ) { |
---|
599 | int th_dim = N; // dimension - dimension of cov |
---|
600 | L.add_vector( log_level, logth, RV ( th_dim ), prefix ); |
---|
601 | } |
---|
602 | if ( log_level[logom] ) { |
---|
603 | int th_dim = N; // dimension - dimension of cov |
---|
604 | L.add_vector( log_level, logom, RV ( th_dim ), prefix ); |
---|
605 | } |
---|
606 | } |
---|
607 | void log_write() const { |
---|
608 | epdf::log_write(); |
---|
609 | if ( log_level[logth] ) { |
---|
610 | floatx Th[N]; |
---|
611 | mpf_th(Th); |
---|
612 | vec th(N); |
---|
613 | for(int i=0;i<N;i++){th(i)=Th[i];} |
---|
614 | log_level.store( logth, th ); |
---|
615 | } |
---|
616 | if ( log_level[logom] ) { |
---|
617 | floatx Om[N]; |
---|
618 | mpf_om(Om); |
---|
619 | vec om(N); |
---|
620 | for(int i=0;i<N;i++){om(i)=Om[i];} |
---|
621 | log_level.store( logom, om ); |
---|
622 | } |
---|
623 | } |
---|
624 | }; |
---|
625 | |
---|
626 | mp mypdf; |
---|
627 | const mp& posterior() const {return mypdf;} |
---|
628 | |
---|
629 | void from_setting(const Setting &set){ |
---|
630 | BM::from_setting(set); |
---|
631 | UI::get ( log_level, set, "log_level", UI::optional ); |
---|
632 | |
---|
633 | UI::get(qom,set,"qom",UI::optional); |
---|
634 | UI::get(qth,set,"qth",UI::optional); |
---|
635 | UI::get(r,set,"r",UI::optional); |
---|
636 | } |
---|
637 | void validate(){ |
---|
638 | mpf_init((floatx)qom,(floatx)qth,(floatx)r); |
---|
639 | |
---|
640 | } |
---|
641 | }; |
---|
642 | UIREGISTER(MPF_pmsm_red); |
---|
643 | |
---|
644 | //! EKF with covariance R estimated by the VB method |
---|
645 | class EKFvbR: public EKFfull{ |
---|
646 | LOG_LEVEL(EKFvbR,logR,logQ,logP); |
---|
647 | |
---|
648 | //! Statistics of the R estimator |
---|
649 | mat PsiR; |
---|
650 | //! Statistics of the Q estimator |
---|
651 | mat PsiQ; |
---|
652 | //! forgetting factor |
---|
653 | double phi; |
---|
654 | //! number of VB iterations |
---|
655 | int niter; |
---|
656 | //! degrees of freedom |
---|
657 | double nu; |
---|
658 | //! stabilizing element |
---|
659 | mat PsiR0; |
---|
660 | //! stabilizing element |
---|
661 | mat PsiQ0; |
---|
662 | |
---|
663 | void from_setting(const Setting &set){ |
---|
664 | EKFfull::from_setting(set); |
---|
665 | if (!UI::get(phi,set,"phi",UI::optional)){ |
---|
666 | phi = 0.99; |
---|
667 | } |
---|
668 | if (!UI::get(niter,set,"niter",UI::optional)){ |
---|
669 | niter = 3; |
---|
670 | } |
---|
671 | PsiQ = Q; |
---|
672 | PsiQ0 = Q; |
---|
673 | PsiR = R; |
---|
674 | PsiR0 = R; |
---|
675 | nu = 3; |
---|
676 | } |
---|
677 | void log_register ( logger &L, const string &prefix ) { |
---|
678 | EKFfull::log_register(L,prefix); |
---|
679 | L.add_vector(log_level, logR, RV("{R }",vec_1<int>(4)), prefix); |
---|
680 | L.add_vector(log_level, logQ, RV("{Q }",vec_1<int>(4)), prefix); |
---|
681 | L.add_vector(log_level, logP, RV("{P }",vec_1<int>(4)), prefix); |
---|
682 | } |
---|
683 | void bayes ( const vec &val, const vec &cond ) { |
---|
684 | vec diffx, diffy; |
---|
685 | mat Psi_vbQ; |
---|
686 | mat Psi_vbR; |
---|
687 | nu = phi*nu + (1-phi)*2 + 1.0; |
---|
688 | |
---|
689 | //save initial values of posterior |
---|
690 | vec mu0=est._mu(); |
---|
691 | fsqmat P0=est._R(); |
---|
692 | vec xpred = pfxu->eval(mu0,cond); |
---|
693 | |
---|
694 | for (int i=0; i<niter; i++){ |
---|
695 | est._mu() = mu0; |
---|
696 | est._R() = P0; |
---|
697 | |
---|
698 | EKFfull::bayes(val,cond); |
---|
699 | |
---|
700 | // diffy = val - fy._mu(); |
---|
701 | // Psi_vbR = phi*PsiR + (1-phi)*PsiR0+ outer_product(diffy,diffy)/*+C*mat(est._R())*C.T()*/; |
---|
702 | // R = Psi_vbR/(nu-2); |
---|
703 | |
---|
704 | diffx = est._mu() - xpred; |
---|
705 | Psi_vbQ = phi*PsiQ + (1-phi)*PsiQ0+ outer_product(diffx,diffx);/*mat(est._R()); A*mat(P0)*A.T();*/ |
---|
706 | // |
---|
707 | Psi_vbQ(0,1) = 0.0; |
---|
708 | Psi_vbQ(1,0) = 0.0; |
---|
709 | Q = Psi_vbQ/(nu-2); |
---|
710 | } |
---|
711 | PsiQ = Psi_vbQ; |
---|
712 | PsiR = Psi_vbR; |
---|
713 | // cout <<"==" << endl << Psi << endl << diff << endl << P0 << endl << ":" << Q; |
---|
714 | log_level.store(logQ, vec(Q._M()._data(),4)); |
---|
715 | log_level.store(logR, vec(R._M()._data(),4)); |
---|
716 | { |
---|
717 | mat Ch(2,2); |
---|
718 | Ch=chol(est._R()._M()); |
---|
719 | log_level.store(logP, vec(Ch._data(),4)); |
---|
720 | } |
---|
721 | } |
---|
722 | }; |
---|
723 | UIREGISTER(EKFvbR); |
---|
724 | |
---|
725 | |
---|
726 | class ekfChfix: public BM{ |
---|
727 | ekf_data E; |
---|
728 | public: |
---|
729 | ekfChfix(){ |
---|
730 | init_ekfCh2(&E,0.000125);set_dim(2); dimc = 2; |
---|
731 | dimy = 2; |
---|
732 | } |
---|
733 | void bayes ( const vec &val, const vec &cond ) { |
---|
734 | int16 ux,uy; |
---|
735 | ux=prevod(cond[0]/Uref,15); |
---|
736 | uy=prevod(cond[1]/Uref,15); |
---|
737 | |
---|
738 | int16 yx,yy; |
---|
739 | // zadani mereni |
---|
740 | yx=prevod(val[0]/Iref,15); |
---|
741 | yy=prevod(val[1]/Iref,15); |
---|
742 | |
---|
743 | int32 detS; |
---|
744 | int16 rem; |
---|
745 | ekfCh2(&E, ux,uy,yx,yy, &detS, &rem); //detS,rem asssigned inside |
---|
746 | |
---|
747 | Est._mu()=vec_2(E.x_est[0]*Wref/32768., E.x_est[1]*Thetaref/32768.); |
---|
748 | |
---|
749 | ll = 0.99*ll+( -0.5*(double)rem/32767)*10000-0.0*log((double)detS); // detS in q(8+15+15)-(8+8). - multiplicative differece is not important |
---|
750 | } |
---|
751 | const epdf& posterior() const {return Est;}; |
---|
752 | void from_setting ( const Setting &set ){ |
---|
753 | BM::from_setting(set); |
---|
754 | vec dQ,dR; |
---|
755 | UI::get ( dQ, set, "dQ", UI::optional ); |
---|
756 | UI::get ( dR, set, "dR", UI::optional ); |
---|
757 | if (dQ.length()==2){ |
---|
758 | E.Q[0]=prevod(dQ[0],15); // 1e-3 |
---|
759 | E.Q[3]=prevod(dQ[1],15); // 1e-3 |
---|
760 | } |
---|
761 | if (dR.length()==2){ |
---|
762 | E.dR[0]=prevod(dR[0],15); // 1e-3 |
---|
763 | E.dR[1]=prevod(dR[1],15); // 1e-3 |
---|
764 | } |
---|
765 | } |
---|
766 | |
---|
767 | enorm<fsqmat> Est; |
---|
768 | mat Ry; |
---|
769 | }; |
---|
770 | UIREGISTER(ekfChfix); |
---|
771 | |
---|
772 | |
---|
773 | |
---|
774 | class ekfChfixQ: public BM{ |
---|
775 | LOG_LEVEL(ekfChfixQ,logQ,logCh,logC,logRes) |
---|
776 | ekf_data E; |
---|
777 | int64 PSI_Q0, PSI_Q1, PSI_Q0_reg, PSI_Q1_reg; |
---|
778 | int Q_ni; |
---|
779 | int phi_Q; |
---|
780 | public: |
---|
781 | ekfChfixQ(){ |
---|
782 | init_ekfCh2(&E,0.000125);set_dim(2); dimc = 2; |
---|
783 | dimy = 2; |
---|
784 | Q_ni = 7; |
---|
785 | phi_Q = ((1<<Q_ni) -1)<<(15-Q_ni); |
---|
786 | |
---|
787 | PSI_Q0_reg = ((int64)((1<<15)-phi_Q)*E.Q[0])<<Q_ni; |
---|
788 | PSI_Q1_reg = ((int64)((1<<15)-phi_Q)*E.Q[3])<<Q_ni; |
---|
789 | PSI_Q0 = ((int64)E.Q[0])<<Q_ni; |
---|
790 | PSI_Q1 = ((int64)E.Q[3])<<Q_ni; |
---|
791 | } |
---|
792 | void bayes ( const vec &val, const vec &cond ) { |
---|
793 | int16 ux,uy; |
---|
794 | ux=prevod(cond[0]/Uref,15); |
---|
795 | uy=prevod(cond[1]/Uref,15); |
---|
796 | |
---|
797 | int16 yx,yy; |
---|
798 | // zadani mereni |
---|
799 | yx=prevod(val[0]/Iref,15); |
---|
800 | yy=prevod(val[1]/Iref,15); |
---|
801 | |
---|
802 | int16 rem; |
---|
803 | int32 detS; |
---|
804 | ekfCh2(&E, ux,uy,yx,yy, &detS, &rem); |
---|
805 | |
---|
806 | Est._mu()=vec_2(E.x_est[0]*Uref/32768., E.x_est[1]*Uref/32768.); |
---|
807 | |
---|
808 | int16 xerr0 = E.x_est[0]-E.x_pred[0]; |
---|
809 | PSI_Q0 = ((int64)(phi_Q*PSI_Q0) + (((int64)xerr0*xerr0)<<15) + PSI_Q0_reg)>>15; |
---|
810 | E.Q[0] = PSI_Q0>>Q_ni; |
---|
811 | |
---|
812 | xerr0 = E.x_est[1]-E.x_pred[1]; |
---|
813 | PSI_Q1 = ((int64)(phi_Q*PSI_Q1) + (((int64)xerr0*xerr0)<<15) + PSI_Q1_reg)>>15; |
---|
814 | E.Q[3] = PSI_Q1>>Q_ni; |
---|
815 | |
---|
816 | cout << E.Q[0] << "," << E.Q[3] <<endl; |
---|
817 | ll = -0.5*qlog(detS)-0.5*rem; |
---|
818 | } |
---|
819 | const epdf& posterior() const {return Est;}; |
---|
820 | void from_setting ( const Setting &set ){ |
---|
821 | BM::from_setting(set); |
---|
822 | vec dQ,dR; |
---|
823 | UI::get ( dQ, set, "dQ", UI::optional ); |
---|
824 | UI::get ( dR, set, "dR", UI::optional ); |
---|
825 | if (dQ.length()==2){ |
---|
826 | E.Q[0]=prevod(dQ[0],15); // 1e-3 |
---|
827 | E.Q[3]=prevod(dQ[1],15); // 1e-3 |
---|
828 | } |
---|
829 | if (dR.length()==2){ |
---|
830 | E.dR[0]=prevod(dR[0],15); // 1e-3 |
---|
831 | E.dR[1]=prevod(dR[1],15); // 1e-3 |
---|
832 | } |
---|
833 | |
---|
834 | UI::get(Q_ni, set, "Q_ni", UI::optional); |
---|
835 | { // zmena Q!! |
---|
836 | phi_Q = ((1<<Q_ni) -1)<<(15-Q_ni); |
---|
837 | |
---|
838 | PSI_Q0_reg = ((int64)((1<<15)-phi_Q)*E.Q[0])<<Q_ni; |
---|
839 | PSI_Q1_reg = ((int64)((1<<15)-phi_Q)*E.Q[3])<<Q_ni; |
---|
840 | PSI_Q0 = ((int64)E.Q[0])<<Q_ni; |
---|
841 | PSI_Q1 = ((int64)E.Q[3])<<Q_ni; |
---|
842 | |
---|
843 | } |
---|
844 | UI::get(log_level, set, "log_level", UI::optional); |
---|
845 | |
---|
846 | } |
---|
847 | void log_register ( logger &L, const string &prefix ) { |
---|
848 | BM::log_register(L,prefix); |
---|
849 | L.add_vector(log_level, logQ, RV("{Q }",vec_1<int>(2)), prefix); |
---|
850 | L.add_vector(log_level, logCh, RV("{Ch }",vec_1<int>(3)), prefix); |
---|
851 | L.add_vector(log_level, logC, RV("{C }",vec_1<int>(4)), prefix); |
---|
852 | L.add_vector(log_level, logRes, RV("{dy }",vec_1<int>(2)), prefix); |
---|
853 | } |
---|
854 | void log_write() const { |
---|
855 | BM::log_write(); |
---|
856 | if ( log_level[logQ] ) { |
---|
857 | log_level.store( logQ, vec_2((double)E.Q[0],(double)E.Q[3] )); |
---|
858 | } |
---|
859 | if ( log_level[logCh] ) { |
---|
860 | log_level.store( logCh, vec_3((double)E.Chf[0],(double)E.Chf[1], (double)E.Chf[3])); |
---|
861 | } |
---|
862 | if ( log_level[logRes] ) { |
---|
863 | log_level.store( logRes, vec_2((double)E.difz[0],(double)E.difz[1])); |
---|
864 | } |
---|
865 | if ( log_level[logC] ) { |
---|
866 | vec v(4); |
---|
867 | for (int i=0;i<4;i++) v(i)=E.C[i]; |
---|
868 | log_level.store( logC, v); |
---|
869 | } |
---|
870 | } |
---|
871 | |
---|
872 | enorm<fsqmat> Est; |
---|
873 | mat Ry; |
---|
874 | }; |
---|
875 | UIREGISTER(ekfChfixQ); |
---|
876 | |
---|
877 | #endif // KF_H |
---|
878 | |
---|