/*! \file \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions \author Vaclav Smidl. ----------------------------------- BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y Using IT++ for numerical operations ----------------------------------- */ #ifndef EKFfix_H #define EKFfix_H #include #include "fixed.h" #include "matrix.h" #include "matrix_vs.h" #include "reference_Q15.h" #include "parametry_motoru.h" using namespace bdm; double minQ(double Q); void mat_to_int16(const imat &M, int16 *I); void vec_to_int16(const ivec &v, int16 *I); void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); #ifdef XXX /*! \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. */ class EKFfixed : public BM { public: void init_ekf(double Tv); void ekf(double ux, double uy, double isxd, double isyd); /* Declaration of local functions */ void prediction(int16 *ux); void correction(void); void update_psi(void); /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ int16 Q[16]; /* matrix [4,4] */ int16 R[4]; /* matrix [2,2] */ int16 x_est[4]; int16 x_pred[4]; int16 P_pred[16]; /* matrix [4,4] */ int16 P_est[16]; /* matrix [4,4] */ int16 Y_mes[2]; int16 ukalm[2]; int16 Kalm[8]; /* matrix [5,2] */ int16 PSI[16]; /* matrix [4,4] */ int16 temp15a[16]; int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ enorm E; mat Ry; public: //! Default constructor EKFfixed ():BM(),E(),Ry(2,2){ int16 i; for(i=0;i<16;i++){Q[i]=0;} for(i=0;i<4;i++){R[i]=0;} for(i=0;i<4;i++){x_est[i]=0;} for(i=0;i<4;i++){x_pred[i]=0;} for(i=0;i<16;i++){P_pred[i]=0;} for(i=0;i<16;i++){P_est[i]=0;} P_est[0]=0x7FFF; P_est[5]=0x7FFF; P_est[10]=0x7FFF; P_est[15]=0x7FFF; for(i=0;i<2;i++){Y_mes[i]=0;} for(i=0;i<2;i++){ukalm[i]=0;} for(i=0;i<8;i++){Kalm[i]=0;} for(i=0;i<16;i++){PSI[i]=0;} set_dim(4); E._mu()=zeros(4); E._R()=zeros(4,4); init_ekf(0.000125); }; //! Here dt = [yt;ut] of appropriate dimensions void bayes ( const vec &yt, const vec &ut ); //!dummy! const epdf& posterior() const {return E;}; }; UIREGISTER(EKFfixed); #endif //! EKF for testing q44 class EKFtest: public EKFfull{ void bayes ( const vec &yt, const vec &cond ) { EKFfull::bayes(yt,cond); mat &P = est._R(); if (P(3,3)>3.14) P(3,3)=3.14; } }; UIREGISTER(EKFtest); /*! \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. */ class EKFfixedUD : public BM { public: LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); void init_ekf(double Tv); void ekf(double ux, double uy, double isxd, double isyd); /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ int16 Q[16]; /* matrix [4,4] */ int16 R[4]; /* matrix [2,2] */ int16 x_est[4]; /* estimate and prediction */ int16 PSI[16]; /* matrix [4,4] */ int16 PSIU[16]; /* matrix PIS*U, [4,4] */ int16 Uf[16]; // upper triangular of covariance (inplace) int16 Df[4]; // diagonal covariance int16 Dfold[4]; // temp of D int16 G[16]; // temp for bierman int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane enorm E; mat Ry; public: //! Default constructor EKFfixedUD ():BM(),E(),Ry(2,2){ int16 i; for(i=0;i<16;i++){Q[i]=0;} for(i=0;i<4;i++){R[i]=0;} for(i=0;i<4;i++){x_est[i]=0;} for(i=0;i<16;i++){Uf[i]=0;} for(i=0;i<4;i++){Df[i]=0;} for(i=0;i<16;i++){G[i]=0;} for(i=0;i<4;i++){Dfold[i]=0;} for(i=0;i<16;i++){PSI[i]=0;} set_dim(4); E._mu()=zeros(4); E._R()=zeros(4,4); init_ekf(0.000125); }; //! Here dt = [yt;ut] of appropriate dimensions void bayes ( const vec &yt, const vec &ut ); //!dummy! const epdf& posterior() const {return E;}; void log_register(logger &L, const string &prefix){ BM::log_register ( L, prefix ); L.add_vector ( log_level, logG, RV("G",16), prefix ); L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); }; //void from_setting(); }; UIREGISTER(EKFfixedUD); /*! * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic * * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. */ class EKFfixedCh : public BM { public: LOG_LEVEL(EKFfixedCh,logCh, logA, logP); void init_ekf(double Tv); void ekf(double ux, double uy, double isxd, double isyd); /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ int16 Q[16]; /* matrix [4,4] */ int16 R[4]; /* matrix [2,2] */ int16 x_est[4]; /* estimate and prediction */ int16 PSI[16]; /* matrix [4,4] */ int16 PSICh[16]; /* matrix PIS*U, [4,4] */ int16 Chf[16]; // upper triangular of covariance (inplace) int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane enorm E; mat Ry; public: //! Default constructor EKFfixedCh ():BM(),E(),Ry(2,2){ int16 i; for(i=0;i<16;i++){Q[i]=0;} for(i=0;i<4;i++){R[i]=0;} for(i=0;i<4;i++){x_est[i]=0;} for(i=0;i<16;i++){Chf[i]=0;} for(i=0;i<16;i++){PSI[i]=0;} set_dim(4); E._mu()=zeros(4); E._R()=zeros(4,4); init_ekf(0.000125); }; //! Here dt = [yt;ut] of appropriate dimensions void bayes ( const vec &yt, const vec &ut ); //!dummy! const epdf& posterior() const {return E;}; void log_register(logger &L, const string &prefix){ BM::log_register ( L, prefix ); L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); }; //void from_setting(); }; UIREGISTER(EKFfixedCh); //! EKF for comparison of EKF_UD with its fixed-point16 implementation class EKF_UDfix : public BM { protected: //! logger LOG_LEVEL(EKF_UDfix,logU, logG); //! Internal Model f(x,u) shared_ptr pfxu; //! Observation Model h(x,u) shared_ptr phxu; //! U part mat U; //! D part vec D; mat A; mat C; mat Q; vec R; enorm est; public: //! copy constructor duplicated EKF_UDfix* _copy() const { return new EKF_UDfix(*this); } const enorm& posterior()const{return est;}; enorm& prior() { return const_cast&>(posterior()); } EKF_UDfix(){} EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} //! Set nonlinear functions for mean values and covariance matrices. void set_parameters ( const shared_ptr &pfxu, const shared_ptr &phxu, const mat Q0, const vec R0 ); //! Here dt = [yt;ut] of appropriate dimensions void bayes ( const vec &yt, const vec &cond = empty_vec ); void log_register ( bdm::logger& L, const string& prefix ){ BM::log_register ( L, prefix ); if ( log_level[logU] ) L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); if ( log_level[logG] ) L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); } /*! Create object from the following structure \code class = 'EKF_UD'; OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting dQ = [...]; % vector containing diagonal of Q dR = [...]; % vector containing diagonal of R --- optional fields --- mu0 = [...]; % vector of statistics mu0 dP0 = [...]; % vector containing diagonal of P0 -- or -- P0 = [...]; % full matrix P0 --- inherited fields --- bdm::BM::from_setting \endcode If the optional fields are not given, they will be filled as follows: \code mu0 = [0,0,0,....]; % empty statistics P0 = eye( dim ); \endcode */ void from_setting ( const Setting &set ); void validate() {}; // TODO dodelat void to_setting( Setting &set ) const; }; UIREGISTER(EKF_UDfix); #endif // KF_H