root/applications/pmsm/simulator_zdenek/ekf_example/ekf_obj.h @ 1006

Revision 384, 2.2 kB (checked in by mido, 16 years ago)

possibly broken?

  • Property svn:eol-style set to native
Line 
1/*!
2  \file
3  \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions
4  \author Vaclav Smidl.
5
6  -----------------------------------
7  BDM++ - C++ library for Bayesian Decision Making under Uncertainty
8
9  Using IT++ for numerical operations
10  -----------------------------------
11*/
12
13#ifndef EKFfix_H
14#define EKFfix_H
15
16
17#include <estim/kalman.h>
18#include "fixed.h"
19#include "matrix.h"
20#include "reference.h"
21#include "parametry_motoru.h"
22
23using namespace bdm;
24
25double minQ(double Q);
26
27/*!
28\brief Extended Kalman Filter with full matrices in fixed point arithmetic
29
30An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean.
31*/
32class EKFfixed : public BM {
33public:
34void init_ekf(double Tv);
35void ekf(double ux, double uy, double isxd, double isyd);
36
37/* Declaration of local functions */
38void prediction(int *ux);
39void correction(void);
40void update_psi(void);
41
42/* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/
43 int Q[16]; /* matrix [4,4] */
44 int R[4]; /* matrix [2,2] */
45
46 int x_est[4];
47 int x_pred[4];
48 int P_pred[16]; /* matrix [4,4] */
49 int P_est[16]; /* matrix [4,4] */
50 int Y_mes[2];
51 int ukalm[2];
52 int Kalm[8]; /* matrix [5,2] */
53
54 int PSI[16]; /* matrix [4,4] */
55
56 int temp15a[16];
57
58 int cA, cB, cC, cG, cH;  // cD, cE, cF, cI ... nepouzivane
59
60 long temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */
61 enorm<fsqmat> E;
62 mat Ry;
63 
64public:
65        //! Default constructor
66        EKFfixed ():BM(),E(),Ry(2,2){
67        int i;
68 for(i=0;i<16;i++){Q[i]=0;}
69 for(i=0;i<4;i++){R[i]=0;}
70
71 for(i=0;i<4;i++){x_est[i]=0;}
72 for(i=0;i<4;i++){x_pred[i]=0;}
73 for(i=0;i<16;i++){P_pred[i]=0;}
74 for(i=0;i<16;i++){P_est[i]=0;}
75 P_est[0]=0x7FFF;
76 P_est[5]=0x7FFF;
77 P_est[10]=0x7FFF;
78 P_est[15]=0x7FFF;
79 for(i=0;i<2;i++){Y_mes[i]=0;}
80 for(i=0;i<2;i++){ukalm[i]=0;}
81 for(i=0;i<8;i++){Kalm[i]=0;}
82
83 for(i=0;i<16;i++){PSI[i]=0;}
84};
85        //! Here dt = [yt;ut] of appropriate dimensions
86        void bayes ( const vec &dt );
87        //!dummy!
88        epdf& posterior(){return E;};
89        void condition ( const vec &Q0 ) {
90               
91                Q[0]=prevod(minQ(Q0(0)),15);       // 0.05
92                Q[5]=prevod(minQ(Q0(1)),15);
93                Q[10]=prevod(minQ(Q0(2)),15);      // 1e-3
94                Q[15]=prevod(minQ(Q0(3)),15);      // 1e-3
95
96        }
97};
98
99
100#endif // KF_H
101
Note: See TracBrowser for help on using the browser.