1 | /*! |
---|
2 | \file |
---|
3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #ifndef EKFfix_H |
---|
14 | #define EKFfix_H |
---|
15 | |
---|
16 | |
---|
17 | #include <estim/kalman.h> |
---|
18 | #include "fixed.h" |
---|
19 | #include "matrix.h" |
---|
20 | #include "reference.h" |
---|
21 | #include "parametry_motoru.h" |
---|
22 | |
---|
23 | using namespace bdm; |
---|
24 | |
---|
25 | double minQ(double Q); |
---|
26 | |
---|
27 | /*! |
---|
28 | \brief Extended Kalman Filter with full matrices in fixed point arithmetic |
---|
29 | |
---|
30 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
31 | */ |
---|
32 | class EKFfixed : public BM { |
---|
33 | public: |
---|
34 | void init_ekf(double Tv); |
---|
35 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
36 | |
---|
37 | /* Declaration of local functions */ |
---|
38 | void prediction(int *ux); |
---|
39 | void correction(void); |
---|
40 | void update_psi(void); |
---|
41 | |
---|
42 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
43 | int Q[16]; /* matrix [4,4] */ |
---|
44 | int R[4]; /* matrix [2,2] */ |
---|
45 | |
---|
46 | int x_est[4]; |
---|
47 | int x_pred[4]; |
---|
48 | int P_pred[16]; /* matrix [4,4] */ |
---|
49 | int P_est[16]; /* matrix [4,4] */ |
---|
50 | int Y_mes[2]; |
---|
51 | int ukalm[2]; |
---|
52 | int Kalm[8]; /* matrix [5,2] */ |
---|
53 | |
---|
54 | int PSI[16]; /* matrix [4,4] */ |
---|
55 | |
---|
56 | int temp15a[16]; |
---|
57 | |
---|
58 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
59 | |
---|
60 | long temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
---|
61 | enorm<fsqmat> E; |
---|
62 | mat Ry; |
---|
63 | |
---|
64 | public: |
---|
65 | //! Default constructor |
---|
66 | EKFfixed ():BM(),E(),Ry(2,2){ |
---|
67 | int i; |
---|
68 | for(i=0;i<16;i++){Q[i]=0;} |
---|
69 | for(i=0;i<4;i++){R[i]=0;} |
---|
70 | |
---|
71 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
72 | for(i=0;i<4;i++){x_pred[i]=0;} |
---|
73 | for(i=0;i<16;i++){P_pred[i]=0;} |
---|
74 | for(i=0;i<16;i++){P_est[i]=0;} |
---|
75 | P_est[0]=0x7FFF; |
---|
76 | P_est[5]=0x7FFF; |
---|
77 | P_est[10]=0x7FFF; |
---|
78 | P_est[15]=0x7FFF; |
---|
79 | for(i=0;i<2;i++){Y_mes[i]=0;} |
---|
80 | for(i=0;i<2;i++){ukalm[i]=0;} |
---|
81 | for(i=0;i<8;i++){Kalm[i]=0;} |
---|
82 | |
---|
83 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
84 | |
---|
85 | set_dim(4); |
---|
86 | E._mu()=zeros(4); |
---|
87 | E._R()=zeros(4,4); |
---|
88 | init_ekf(0.000125); |
---|
89 | }; |
---|
90 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
91 | void bayes ( const vec &yt, const vec &ut ); |
---|
92 | //!dummy! |
---|
93 | const epdf& posterior() const {return E;}; |
---|
94 | |
---|
95 | }; |
---|
96 | |
---|
97 | UIREGISTER(EKFfixed); |
---|
98 | |
---|
99 | #endif // KF_H |
---|
100 | |
---|