1 | /*! |
---|
2 | \file |
---|
3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #ifndef EKFfix_H |
---|
14 | #define EKFfix_H |
---|
15 | |
---|
16 | |
---|
17 | #include <estim/kalman.h> |
---|
18 | #include "fixed.h" |
---|
19 | #include "matrix.h" |
---|
20 | #include "matrix_vs.h" |
---|
21 | #include "reference.h" |
---|
22 | #include "parametry_motoru.h" |
---|
23 | |
---|
24 | using namespace bdm; |
---|
25 | |
---|
26 | double minQ(double Q); |
---|
27 | |
---|
28 | void mat_to_int(const imat &M, int *I); |
---|
29 | void vec_to_int(const ivec &v, int *I); |
---|
30 | |
---|
31 | /*! |
---|
32 | \brief Extended Kalman Filter with full matrices in fixed point arithmetic |
---|
33 | |
---|
34 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
35 | */ |
---|
36 | class EKFfixed : public BM { |
---|
37 | public: |
---|
38 | void init_ekf(double Tv); |
---|
39 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
40 | |
---|
41 | /* Declaration of local functions */ |
---|
42 | void prediction(int *ux); |
---|
43 | void correction(void); |
---|
44 | void update_psi(void); |
---|
45 | |
---|
46 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
47 | int Q[16]; /* matrix [4,4] */ |
---|
48 | int R[4]; /* matrix [2,2] */ |
---|
49 | |
---|
50 | int x_est[4]; |
---|
51 | int x_pred[4]; |
---|
52 | int P_pred[16]; /* matrix [4,4] */ |
---|
53 | int P_est[16]; /* matrix [4,4] */ |
---|
54 | int Y_mes[2]; |
---|
55 | int ukalm[2]; |
---|
56 | int Kalm[8]; /* matrix [5,2] */ |
---|
57 | |
---|
58 | int PSI[16]; /* matrix [4,4] */ |
---|
59 | |
---|
60 | int temp15a[16]; |
---|
61 | |
---|
62 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
63 | |
---|
64 | long temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
---|
65 | enorm<fsqmat> E; |
---|
66 | mat Ry; |
---|
67 | |
---|
68 | public: |
---|
69 | //! Default constructor |
---|
70 | EKFfixed ():BM(),E(),Ry(2,2){ |
---|
71 | int i; |
---|
72 | for(i=0;i<16;i++){Q[i]=0;} |
---|
73 | for(i=0;i<4;i++){R[i]=0;} |
---|
74 | |
---|
75 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
76 | for(i=0;i<4;i++){x_pred[i]=0;} |
---|
77 | for(i=0;i<16;i++){P_pred[i]=0;} |
---|
78 | for(i=0;i<16;i++){P_est[i]=0;} |
---|
79 | P_est[0]=0x7FFF; |
---|
80 | P_est[5]=0x7FFF; |
---|
81 | P_est[10]=0x7FFF; |
---|
82 | P_est[15]=0x7FFF; |
---|
83 | for(i=0;i<2;i++){Y_mes[i]=0;} |
---|
84 | for(i=0;i<2;i++){ukalm[i]=0;} |
---|
85 | for(i=0;i<8;i++){Kalm[i]=0;} |
---|
86 | |
---|
87 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
88 | |
---|
89 | set_dim(4); |
---|
90 | E._mu()=zeros(4); |
---|
91 | E._R()=zeros(4,4); |
---|
92 | init_ekf(0.000125); |
---|
93 | }; |
---|
94 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
95 | void bayes ( const vec &yt, const vec &ut ); |
---|
96 | //!dummy! |
---|
97 | const epdf& posterior() const {return E;}; |
---|
98 | |
---|
99 | }; |
---|
100 | |
---|
101 | UIREGISTER(EKFfixed); |
---|
102 | |
---|
103 | /*! |
---|
104 | \brief Extended Kalman Filter with UD matrices in fixed point arithmetic |
---|
105 | |
---|
106 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
107 | */ |
---|
108 | class EKFfixedUD : public BM { |
---|
109 | public: |
---|
110 | void init_ekf(double Tv); |
---|
111 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
112 | |
---|
113 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
114 | int Q[16]; /* matrix [4,4] */ |
---|
115 | int R[4]; /* matrix [2,2] */ |
---|
116 | |
---|
117 | int x_est[4]; /* estimate and prediction */ |
---|
118 | |
---|
119 | int PSI[16]; /* matrix [4,4] */ |
---|
120 | int PSIU[16]; /* matrix PIS*U, [4,4] */ |
---|
121 | |
---|
122 | int Uf[16]; // upper triangular of covariance (inplace) |
---|
123 | int Df[4]; // diagonal covariance |
---|
124 | int Dfold[4]; // temp of D |
---|
125 | int G[16]; // temp for bierman |
---|
126 | |
---|
127 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
128 | |
---|
129 | enorm<fsqmat> E; |
---|
130 | mat Ry; |
---|
131 | |
---|
132 | public: |
---|
133 | //! Default constructor |
---|
134 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
---|
135 | int i; |
---|
136 | for(i=0;i<16;i++){Q[i]=0;} |
---|
137 | for(i=0;i<4;i++){R[i]=0;} |
---|
138 | |
---|
139 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
140 | for(i=0;i<16;i++){Uf[i]=0;} |
---|
141 | for(i=0;i<4;i++){Df[i]=0;} |
---|
142 | for(i=0;i<16;i++){G[i]=0;} |
---|
143 | for(i=0;i<4;i++){Dfold[i]=0;} |
---|
144 | |
---|
145 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
146 | |
---|
147 | set_dim(4); |
---|
148 | E._mu()=zeros(4); |
---|
149 | E._R()=zeros(4,4); |
---|
150 | init_ekf(0.000125); |
---|
151 | }; |
---|
152 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
153 | void bayes ( const vec &yt, const vec &ut ); |
---|
154 | //!dummy! |
---|
155 | const epdf& posterior() const {return E;}; |
---|
156 | |
---|
157 | }; |
---|
158 | |
---|
159 | UIREGISTER(EKFfixedUD); |
---|
160 | |
---|
161 | //! EKF for comparison of EKF_UD with its fixed-point implementation |
---|
162 | class EKF_UDfix : public BM { |
---|
163 | protected: |
---|
164 | //! logger |
---|
165 | LOG_LEVEL(EKF_UDfix,logU, logG); |
---|
166 | //! Internal Model f(x,u) |
---|
167 | shared_ptr<diffbifn> pfxu; |
---|
168 | |
---|
169 | //! Observation Model h(x,u) |
---|
170 | shared_ptr<diffbifn> phxu; |
---|
171 | |
---|
172 | //! U part |
---|
173 | mat U; |
---|
174 | //! D part |
---|
175 | vec D; |
---|
176 | |
---|
177 | int Uf[25]; |
---|
178 | int Df[5]; |
---|
179 | int Dfold[5]; |
---|
180 | |
---|
181 | mat A; |
---|
182 | mat C; |
---|
183 | mat Q; |
---|
184 | vec R; |
---|
185 | |
---|
186 | int PSI[25]; |
---|
187 | int PSIU[25]; |
---|
188 | int Gf[25]; |
---|
189 | |
---|
190 | enorm<ldmat> est; |
---|
191 | |
---|
192 | |
---|
193 | public: |
---|
194 | |
---|
195 | //! copy constructor duplicated |
---|
196 | EKF_UDfix* _copy() const { |
---|
197 | return new EKF_UDfix(*this); |
---|
198 | } |
---|
199 | |
---|
200 | const enorm<ldmat>& posterior()const{return est;}; |
---|
201 | |
---|
202 | enorm<ldmat>& prior() { |
---|
203 | return const_cast<enorm<ldmat>&>(posterior()); |
---|
204 | } |
---|
205 | |
---|
206 | EKF_UDfix(){} |
---|
207 | |
---|
208 | |
---|
209 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
---|
210 | |
---|
211 | //! Set nonlinear functions for mean values and covariance matrices. |
---|
212 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
---|
213 | |
---|
214 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
215 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
---|
216 | |
---|
217 | void log_register ( bdm::logger& L, const string& prefix ){ |
---|
218 | BM::log_register ( L, prefix ); |
---|
219 | |
---|
220 | if ( log_level[logU] ) |
---|
221 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
---|
222 | if ( log_level[logG] ) |
---|
223 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
---|
224 | |
---|
225 | } |
---|
226 | /*! Create object from the following structure |
---|
227 | |
---|
228 | \code |
---|
229 | class = 'EKF_UD'; |
---|
230 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
231 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
232 | dQ = [...]; % vector containing diagonal of Q |
---|
233 | dR = [...]; % vector containing diagonal of R |
---|
234 | --- optional fields --- |
---|
235 | mu0 = [...]; % vector of statistics mu0 |
---|
236 | dP0 = [...]; % vector containing diagonal of P0 |
---|
237 | -- or -- |
---|
238 | P0 = [...]; % full matrix P0 |
---|
239 | --- inherited fields --- |
---|
240 | bdm::BM::from_setting |
---|
241 | \endcode |
---|
242 | If the optional fields are not given, they will be filled as follows: |
---|
243 | \code |
---|
244 | mu0 = [0,0,0,....]; % empty statistics |
---|
245 | P0 = eye( dim ); |
---|
246 | \endcode |
---|
247 | */ |
---|
248 | void from_setting ( const Setting &set ); |
---|
249 | |
---|
250 | void validate() {}; |
---|
251 | // TODO dodelat void to_setting( Setting &set ) const; |
---|
252 | |
---|
253 | }; |
---|
254 | UIREGISTER(EKF_UDfix); |
---|
255 | |
---|
256 | |
---|
257 | |
---|
258 | |
---|
259 | #endif // KF_H |
---|
260 | |
---|