| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertainty |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | #ifndef EKFfix_H |
|---|
| 14 | #define EKFfix_H |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include <estim/kalman.h> |
|---|
| 18 | #include "fixed.h" |
|---|
| 19 | #include "matrix.h" |
|---|
| 20 | #include "matrix_vs.h" |
|---|
| 21 | #include "reference_Q15.h" |
|---|
| 22 | #include "parametry_motoru.h" |
|---|
| 23 | |
|---|
| 24 | using namespace bdm; |
|---|
| 25 | |
|---|
| 26 | double minQ(double Q); |
|---|
| 27 | |
|---|
| 28 | void mat_to_int(const imat &M, int *I); |
|---|
| 29 | void vec_to_int(const ivec &v, int *I); |
|---|
| 30 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
|---|
| 31 | |
|---|
| 32 | /*! |
|---|
| 33 | \brief Extended Kalman Filter with full matrices in fixed point arithmetic |
|---|
| 34 | |
|---|
| 35 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 36 | */ |
|---|
| 37 | class EKFfixed : public BM { |
|---|
| 38 | public: |
|---|
| 39 | void init_ekf(double Tv); |
|---|
| 40 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 41 | |
|---|
| 42 | /* Declaration of local functions */ |
|---|
| 43 | void prediction(int *ux); |
|---|
| 44 | void correction(void); |
|---|
| 45 | void update_psi(void); |
|---|
| 46 | |
|---|
| 47 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 48 | int Q[16]; /* matrix [4,4] */ |
|---|
| 49 | int R[4]; /* matrix [2,2] */ |
|---|
| 50 | |
|---|
| 51 | int x_est[4]; |
|---|
| 52 | int x_pred[4]; |
|---|
| 53 | int P_pred[16]; /* matrix [4,4] */ |
|---|
| 54 | int P_est[16]; /* matrix [4,4] */ |
|---|
| 55 | int Y_mes[2]; |
|---|
| 56 | int ukalm[2]; |
|---|
| 57 | int Kalm[8]; /* matrix [5,2] */ |
|---|
| 58 | |
|---|
| 59 | int PSI[16]; /* matrix [4,4] */ |
|---|
| 60 | |
|---|
| 61 | int temp15a[16]; |
|---|
| 62 | |
|---|
| 63 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 64 | |
|---|
| 65 | long temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
|---|
| 66 | enorm<fsqmat> E; |
|---|
| 67 | mat Ry; |
|---|
| 68 | |
|---|
| 69 | public: |
|---|
| 70 | //! Default constructor |
|---|
| 71 | EKFfixed ():BM(),E(),Ry(2,2){ |
|---|
| 72 | int i; |
|---|
| 73 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 74 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 75 | |
|---|
| 76 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 77 | for(i=0;i<4;i++){x_pred[i]=0;} |
|---|
| 78 | for(i=0;i<16;i++){P_pred[i]=0;} |
|---|
| 79 | for(i=0;i<16;i++){P_est[i]=0;} |
|---|
| 80 | P_est[0]=0x7FFF; |
|---|
| 81 | P_est[5]=0x7FFF; |
|---|
| 82 | P_est[10]=0x7FFF; |
|---|
| 83 | P_est[15]=0x7FFF; |
|---|
| 84 | for(i=0;i<2;i++){Y_mes[i]=0;} |
|---|
| 85 | for(i=0;i<2;i++){ukalm[i]=0;} |
|---|
| 86 | for(i=0;i<8;i++){Kalm[i]=0;} |
|---|
| 87 | |
|---|
| 88 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 89 | |
|---|
| 90 | set_dim(4); |
|---|
| 91 | E._mu()=zeros(4); |
|---|
| 92 | E._R()=zeros(4,4); |
|---|
| 93 | init_ekf(0.000125); |
|---|
| 94 | }; |
|---|
| 95 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 96 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 97 | //!dummy! |
|---|
| 98 | const epdf& posterior() const {return E;}; |
|---|
| 99 | |
|---|
| 100 | }; |
|---|
| 101 | |
|---|
| 102 | UIREGISTER(EKFfixed); |
|---|
| 103 | |
|---|
| 104 | /*! |
|---|
| 105 | \brief Extended Kalman Filter with UD matrices in fixed point arithmetic |
|---|
| 106 | |
|---|
| 107 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 108 | */ |
|---|
| 109 | class EKFfixedUD : public BM { |
|---|
| 110 | public: |
|---|
| 111 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
|---|
| 112 | |
|---|
| 113 | void init_ekf(double Tv); |
|---|
| 114 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 115 | |
|---|
| 116 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 117 | int Q[16]; /* matrix [4,4] */ |
|---|
| 118 | int R[4]; /* matrix [2,2] */ |
|---|
| 119 | |
|---|
| 120 | int x_est[4]; /* estimate and prediction */ |
|---|
| 121 | |
|---|
| 122 | int PSI[16]; /* matrix [4,4] */ |
|---|
| 123 | int PSIU[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 124 | |
|---|
| 125 | int Uf[16]; // upper triangular of covariance (inplace) |
|---|
| 126 | int Df[4]; // diagonal covariance |
|---|
| 127 | int Dfold[4]; // temp of D |
|---|
| 128 | int G[16]; // temp for bierman |
|---|
| 129 | |
|---|
| 130 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 131 | |
|---|
| 132 | enorm<fsqmat> E; |
|---|
| 133 | mat Ry; |
|---|
| 134 | |
|---|
| 135 | public: |
|---|
| 136 | //! Default constructor |
|---|
| 137 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
|---|
| 138 | int i; |
|---|
| 139 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 140 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 141 | |
|---|
| 142 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 143 | for(i=0;i<16;i++){Uf[i]=0;} |
|---|
| 144 | for(i=0;i<4;i++){Df[i]=0;} |
|---|
| 145 | for(i=0;i<16;i++){G[i]=0;} |
|---|
| 146 | for(i=0;i<4;i++){Dfold[i]=0;} |
|---|
| 147 | |
|---|
| 148 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 149 | |
|---|
| 150 | set_dim(4); |
|---|
| 151 | E._mu()=zeros(4); |
|---|
| 152 | E._R()=zeros(4,4); |
|---|
| 153 | init_ekf(0.000125); |
|---|
| 154 | }; |
|---|
| 155 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 156 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 157 | //!dummy! |
|---|
| 158 | const epdf& posterior() const {return E;}; |
|---|
| 159 | void log_register(logger &L, const string &prefix){ |
|---|
| 160 | BM::log_register ( L, prefix ); |
|---|
| 161 | |
|---|
| 162 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
|---|
| 163 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
|---|
| 164 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
|---|
| 165 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 166 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 167 | |
|---|
| 168 | }; |
|---|
| 169 | //void from_setting(); |
|---|
| 170 | }; |
|---|
| 171 | |
|---|
| 172 | UIREGISTER(EKFfixedUD); |
|---|
| 173 | |
|---|
| 174 | /*! |
|---|
| 175 | * \brief Extended Kalman Filter with Chol matrices in fixed point arithmetic |
|---|
| 176 | * |
|---|
| 177 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 178 | */ |
|---|
| 179 | class EKFfixedCh : public BM { |
|---|
| 180 | public: |
|---|
| 181 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
|---|
| 182 | |
|---|
| 183 | void init_ekf(double Tv); |
|---|
| 184 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 185 | |
|---|
| 186 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 187 | int Q[16]; /* matrix [4,4] */ |
|---|
| 188 | int R[4]; /* matrix [2,2] */ |
|---|
| 189 | |
|---|
| 190 | int x_est[4]; /* estimate and prediction */ |
|---|
| 191 | |
|---|
| 192 | int PSI[16]; /* matrix [4,4] */ |
|---|
| 193 | int PSICh[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 194 | |
|---|
| 195 | int Chf[16]; // upper triangular of covariance (inplace) |
|---|
| 196 | |
|---|
| 197 | int cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 198 | |
|---|
| 199 | enorm<chmat> E; |
|---|
| 200 | mat Ry; |
|---|
| 201 | |
|---|
| 202 | public: |
|---|
| 203 | //! Default constructor |
|---|
| 204 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
|---|
| 205 | int i; |
|---|
| 206 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 207 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 208 | |
|---|
| 209 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 210 | for(i=0;i<16;i++){Chf[i]=0;} |
|---|
| 211 | |
|---|
| 212 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 213 | |
|---|
| 214 | set_dim(4); |
|---|
| 215 | E._mu()=zeros(4); |
|---|
| 216 | E._R()=zeros(4,4); |
|---|
| 217 | init_ekf(0.000125); |
|---|
| 218 | }; |
|---|
| 219 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 220 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 221 | //!dummy! |
|---|
| 222 | const epdf& posterior() const {return E;}; |
|---|
| 223 | void log_register(logger &L, const string &prefix){ |
|---|
| 224 | BM::log_register ( L, prefix ); |
|---|
| 225 | |
|---|
| 226 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
|---|
| 227 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 228 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 229 | |
|---|
| 230 | }; |
|---|
| 231 | //void from_setting(); |
|---|
| 232 | }; |
|---|
| 233 | |
|---|
| 234 | UIREGISTER(EKFfixedCh); |
|---|
| 235 | |
|---|
| 236 | |
|---|
| 237 | //! EKF for comparison of EKF_UD with its fixed-point implementation |
|---|
| 238 | class EKF_UDfix : public BM { |
|---|
| 239 | protected: |
|---|
| 240 | //! logger |
|---|
| 241 | LOG_LEVEL(EKF_UDfix,logU, logG); |
|---|
| 242 | //! Internal Model f(x,u) |
|---|
| 243 | shared_ptr<diffbifn> pfxu; |
|---|
| 244 | |
|---|
| 245 | //! Observation Model h(x,u) |
|---|
| 246 | shared_ptr<diffbifn> phxu; |
|---|
| 247 | |
|---|
| 248 | //! U part |
|---|
| 249 | mat U; |
|---|
| 250 | //! D part |
|---|
| 251 | vec D; |
|---|
| 252 | |
|---|
| 253 | mat A; |
|---|
| 254 | mat C; |
|---|
| 255 | mat Q; |
|---|
| 256 | vec R; |
|---|
| 257 | |
|---|
| 258 | enorm<ldmat> est; |
|---|
| 259 | |
|---|
| 260 | |
|---|
| 261 | public: |
|---|
| 262 | |
|---|
| 263 | //! copy constructor duplicated |
|---|
| 264 | EKF_UDfix* _copy() const { |
|---|
| 265 | return new EKF_UDfix(*this); |
|---|
| 266 | } |
|---|
| 267 | |
|---|
| 268 | const enorm<ldmat>& posterior()const{return est;}; |
|---|
| 269 | |
|---|
| 270 | enorm<ldmat>& prior() { |
|---|
| 271 | return const_cast<enorm<ldmat>&>(posterior()); |
|---|
| 272 | } |
|---|
| 273 | |
|---|
| 274 | EKF_UDfix(){} |
|---|
| 275 | |
|---|
| 276 | |
|---|
| 277 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
|---|
| 278 | |
|---|
| 279 | //! Set nonlinear functions for mean values and covariance matrices. |
|---|
| 280 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
|---|
| 281 | |
|---|
| 282 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 283 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 284 | |
|---|
| 285 | void log_register ( bdm::logger& L, const string& prefix ){ |
|---|
| 286 | BM::log_register ( L, prefix ); |
|---|
| 287 | |
|---|
| 288 | if ( log_level[logU] ) |
|---|
| 289 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
|---|
| 290 | if ( log_level[logG] ) |
|---|
| 291 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
|---|
| 292 | |
|---|
| 293 | } |
|---|
| 294 | /*! Create object from the following structure |
|---|
| 295 | |
|---|
| 296 | \code |
|---|
| 297 | class = 'EKF_UD'; |
|---|
| 298 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 299 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 300 | dQ = [...]; % vector containing diagonal of Q |
|---|
| 301 | dR = [...]; % vector containing diagonal of R |
|---|
| 302 | --- optional fields --- |
|---|
| 303 | mu0 = [...]; % vector of statistics mu0 |
|---|
| 304 | dP0 = [...]; % vector containing diagonal of P0 |
|---|
| 305 | -- or -- |
|---|
| 306 | P0 = [...]; % full matrix P0 |
|---|
| 307 | --- inherited fields --- |
|---|
| 308 | bdm::BM::from_setting |
|---|
| 309 | \endcode |
|---|
| 310 | If the optional fields are not given, they will be filled as follows: |
|---|
| 311 | \code |
|---|
| 312 | mu0 = [0,0,0,....]; % empty statistics |
|---|
| 313 | P0 = eye( dim ); |
|---|
| 314 | \endcode |
|---|
| 315 | */ |
|---|
| 316 | void from_setting ( const Setting &set ); |
|---|
| 317 | |
|---|
| 318 | void validate() {}; |
|---|
| 319 | // TODO dodelat void to_setting( Setting &set ) const; |
|---|
| 320 | |
|---|
| 321 | }; |
|---|
| 322 | UIREGISTER(EKF_UDfix); |
|---|
| 323 | |
|---|
| 324 | |
|---|
| 325 | |
|---|
| 326 | |
|---|
| 327 | #endif // KF_H |
|---|
| 328 | |
|---|