| 1 | /*! |
|---|
| 2 | \file |
|---|
| 3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
|---|
| 4 | \author Vaclav Smidl. |
|---|
| 5 | |
|---|
| 6 | ----------------------------------- |
|---|
| 7 | BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y |
|---|
| 8 | |
|---|
| 9 | Using IT++ for numerical operations |
|---|
| 10 | ----------------------------------- |
|---|
| 11 | */ |
|---|
| 12 | |
|---|
| 13 | #ifndef EKFfix_H |
|---|
| 14 | #define EKFfix_H |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | #include <estim/kalman.h> |
|---|
| 18 | #include "fixed.h" |
|---|
| 19 | #include "matrix.h" |
|---|
| 20 | #include "matrix_vs.h" |
|---|
| 21 | #include "reference_Q15.h" |
|---|
| 22 | #include "parametry_motoru.h" |
|---|
| 23 | |
|---|
| 24 | using namespace bdm; |
|---|
| 25 | |
|---|
| 26 | double minQ(double Q); |
|---|
| 27 | |
|---|
| 28 | void mat_to_int16(const imat &M, int16 *I); |
|---|
| 29 | void vec_to_int16(const ivec &v, int16 *I); |
|---|
| 30 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
|---|
| 31 | |
|---|
| 32 | #ifdef XXX |
|---|
| 33 | /*! |
|---|
| 34 | \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic |
|---|
| 35 | |
|---|
| 36 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 37 | */ |
|---|
| 38 | class EKFfixed : public BM { |
|---|
| 39 | public: |
|---|
| 40 | void init_ekf(double Tv); |
|---|
| 41 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 42 | |
|---|
| 43 | /* Declaration of local functions */ |
|---|
| 44 | void prediction(int16 *ux); |
|---|
| 45 | void correction(void); |
|---|
| 46 | void update_psi(void); |
|---|
| 47 | |
|---|
| 48 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 49 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 50 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 51 | |
|---|
| 52 | int16 x_est[4]; |
|---|
| 53 | int16 x_pred[4]; |
|---|
| 54 | int16 P_pred[16]; /* matrix [4,4] */ |
|---|
| 55 | int16 P_est[16]; /* matrix [4,4] */ |
|---|
| 56 | int16 Y_mes[2]; |
|---|
| 57 | int16 ukalm[2]; |
|---|
| 58 | int16 Kalm[8]; /* matrix [5,2] */ |
|---|
| 59 | |
|---|
| 60 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 61 | |
|---|
| 62 | int16 temp15a[16]; |
|---|
| 63 | |
|---|
| 64 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 65 | |
|---|
| 66 | int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
|---|
| 67 | enorm<fsqmat> E; |
|---|
| 68 | mat Ry; |
|---|
| 69 | |
|---|
| 70 | public: |
|---|
| 71 | //! Default constructor |
|---|
| 72 | EKFfixed ():BM(),E(),Ry(2,2){ |
|---|
| 73 | int16 i; |
|---|
| 74 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 75 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 76 | |
|---|
| 77 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 78 | for(i=0;i<4;i++){x_pred[i]=0;} |
|---|
| 79 | for(i=0;i<16;i++){P_pred[i]=0;} |
|---|
| 80 | for(i=0;i<16;i++){P_est[i]=0;} |
|---|
| 81 | P_est[0]=0x7FFF; |
|---|
| 82 | P_est[5]=0x7FFF; |
|---|
| 83 | P_est[10]=0x7FFF; |
|---|
| 84 | P_est[15]=0x7FFF; |
|---|
| 85 | for(i=0;i<2;i++){Y_mes[i]=0;} |
|---|
| 86 | for(i=0;i<2;i++){ukalm[i]=0;} |
|---|
| 87 | for(i=0;i<8;i++){Kalm[i]=0;} |
|---|
| 88 | |
|---|
| 89 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 90 | |
|---|
| 91 | set_dim(4); |
|---|
| 92 | E._mu()=zeros(4); |
|---|
| 93 | E._R()=zeros(4,4); |
|---|
| 94 | init_ekf(0.000125); |
|---|
| 95 | }; |
|---|
| 96 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 97 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 98 | //!dummy! |
|---|
| 99 | const epdf& posterior() const {return E;}; |
|---|
| 100 | |
|---|
| 101 | }; |
|---|
| 102 | |
|---|
| 103 | UIREGISTER(EKFfixed); |
|---|
| 104 | |
|---|
| 105 | #endif |
|---|
| 106 | |
|---|
| 107 | //! EKF for testing q44 |
|---|
| 108 | class EKFtest: public EKF_UD{ |
|---|
| 109 | void bayes ( const vec &yt, const vec &cond ) { |
|---|
| 110 | EKF_UD::bayes(yt,cond); |
|---|
| 111 | vec D = prior()._R()._D(); |
|---|
| 112 | |
|---|
| 113 | if (D(3)>10) D(3) = 10; |
|---|
| 114 | |
|---|
| 115 | prior()._R().__D()=D; |
|---|
| 116 | } |
|---|
| 117 | }; |
|---|
| 118 | UIREGISTER(EKFtest); |
|---|
| 119 | |
|---|
| 120 | /*! |
|---|
| 121 | \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
|---|
| 122 | |
|---|
| 123 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 124 | */ |
|---|
| 125 | class EKFfixedUD : public BM { |
|---|
| 126 | public: |
|---|
| 127 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
|---|
| 128 | |
|---|
| 129 | void init_ekf(double Tv); |
|---|
| 130 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 131 | |
|---|
| 132 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 133 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 134 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 135 | |
|---|
| 136 | int16 x_est[4]; /* estimate and prediction */ |
|---|
| 137 | |
|---|
| 138 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 139 | int16 PSIU[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 140 | |
|---|
| 141 | int16 Uf[16]; // upper triangular of covariance (inplace) |
|---|
| 142 | int16 Df[4]; // diagonal covariance |
|---|
| 143 | int16 Dfold[4]; // temp of D |
|---|
| 144 | int16 G[16]; // temp for bierman |
|---|
| 145 | |
|---|
| 146 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 147 | |
|---|
| 148 | enorm<fsqmat> E; |
|---|
| 149 | mat Ry; |
|---|
| 150 | |
|---|
| 151 | public: |
|---|
| 152 | //! Default constructor |
|---|
| 153 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
|---|
| 154 | int16 i; |
|---|
| 155 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 156 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 157 | |
|---|
| 158 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 159 | for(i=0;i<16;i++){Uf[i]=0;} |
|---|
| 160 | for(i=0;i<4;i++){Df[i]=0;} |
|---|
| 161 | for(i=0;i<16;i++){G[i]=0;} |
|---|
| 162 | for(i=0;i<4;i++){Dfold[i]=0;} |
|---|
| 163 | |
|---|
| 164 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 165 | |
|---|
| 166 | set_dim(4); |
|---|
| 167 | E._mu()=zeros(4); |
|---|
| 168 | E._R()=zeros(4,4); |
|---|
| 169 | init_ekf(0.000125); |
|---|
| 170 | }; |
|---|
| 171 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 172 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 173 | //!dummy! |
|---|
| 174 | const epdf& posterior() const {return E;}; |
|---|
| 175 | void log_register(logger &L, const string &prefix){ |
|---|
| 176 | BM::log_register ( L, prefix ); |
|---|
| 177 | |
|---|
| 178 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
|---|
| 179 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
|---|
| 180 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
|---|
| 181 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 182 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 183 | |
|---|
| 184 | }; |
|---|
| 185 | //void from_setting(); |
|---|
| 186 | }; |
|---|
| 187 | |
|---|
| 188 | UIREGISTER(EKFfixedUD); |
|---|
| 189 | |
|---|
| 190 | /*! |
|---|
| 191 | * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic |
|---|
| 192 | * |
|---|
| 193 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
|---|
| 194 | */ |
|---|
| 195 | class EKFfixedCh : public BM { |
|---|
| 196 | public: |
|---|
| 197 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
|---|
| 198 | |
|---|
| 199 | void init_ekf(double Tv); |
|---|
| 200 | void ekf(double ux, double uy, double isxd, double isyd); |
|---|
| 201 | |
|---|
| 202 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
|---|
| 203 | int16 Q[16]; /* matrix [4,4] */ |
|---|
| 204 | int16 R[4]; /* matrix [2,2] */ |
|---|
| 205 | |
|---|
| 206 | int16 x_est[4]; /* estimate and prediction */ |
|---|
| 207 | |
|---|
| 208 | int16 PSI[16]; /* matrix [4,4] */ |
|---|
| 209 | int16 PSICh[16]; /* matrix PIS*U, [4,4] */ |
|---|
| 210 | |
|---|
| 211 | int16 Chf[16]; // upper triangular of covariance (inplace) |
|---|
| 212 | |
|---|
| 213 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
|---|
| 214 | |
|---|
| 215 | enorm<chmat> E; |
|---|
| 216 | mat Ry; |
|---|
| 217 | |
|---|
| 218 | public: |
|---|
| 219 | //! Default constructor |
|---|
| 220 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
|---|
| 221 | int16 i; |
|---|
| 222 | for(i=0;i<16;i++){Q[i]=0;} |
|---|
| 223 | for(i=0;i<4;i++){R[i]=0;} |
|---|
| 224 | |
|---|
| 225 | for(i=0;i<4;i++){x_est[i]=0;} |
|---|
| 226 | for(i=0;i<16;i++){Chf[i]=0;} |
|---|
| 227 | |
|---|
| 228 | for(i=0;i<16;i++){PSI[i]=0;} |
|---|
| 229 | |
|---|
| 230 | set_dim(4); |
|---|
| 231 | E._mu()=zeros(4); |
|---|
| 232 | E._R()=zeros(4,4); |
|---|
| 233 | init_ekf(0.000125); |
|---|
| 234 | }; |
|---|
| 235 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 236 | void bayes ( const vec &yt, const vec &ut ); |
|---|
| 237 | //!dummy! |
|---|
| 238 | const epdf& posterior() const {return E;}; |
|---|
| 239 | void log_register(logger &L, const string &prefix){ |
|---|
| 240 | BM::log_register ( L, prefix ); |
|---|
| 241 | |
|---|
| 242 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
|---|
| 243 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
|---|
| 244 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
|---|
| 245 | |
|---|
| 246 | }; |
|---|
| 247 | //void from_setting(); |
|---|
| 248 | }; |
|---|
| 249 | |
|---|
| 250 | UIREGISTER(EKFfixedCh); |
|---|
| 251 | |
|---|
| 252 | |
|---|
| 253 | //! EKF for comparison of EKF_UD with its fixed-point16 implementation |
|---|
| 254 | class EKF_UDfix : public BM { |
|---|
| 255 | protected: |
|---|
| 256 | //! logger |
|---|
| 257 | LOG_LEVEL(EKF_UDfix,logU, logG); |
|---|
| 258 | //! Internal Model f(x,u) |
|---|
| 259 | shared_ptr<diffbifn> pfxu; |
|---|
| 260 | |
|---|
| 261 | //! Observation Model h(x,u) |
|---|
| 262 | shared_ptr<diffbifn> phxu; |
|---|
| 263 | |
|---|
| 264 | //! U part |
|---|
| 265 | mat U; |
|---|
| 266 | //! D part |
|---|
| 267 | vec D; |
|---|
| 268 | |
|---|
| 269 | mat A; |
|---|
| 270 | mat C; |
|---|
| 271 | mat Q; |
|---|
| 272 | vec R; |
|---|
| 273 | |
|---|
| 274 | enorm<ldmat> est; |
|---|
| 275 | |
|---|
| 276 | |
|---|
| 277 | public: |
|---|
| 278 | |
|---|
| 279 | //! copy constructor duplicated |
|---|
| 280 | EKF_UDfix* _copy() const { |
|---|
| 281 | return new EKF_UDfix(*this); |
|---|
| 282 | } |
|---|
| 283 | |
|---|
| 284 | const enorm<ldmat>& posterior()const{return est;}; |
|---|
| 285 | |
|---|
| 286 | enorm<ldmat>& prior() { |
|---|
| 287 | return const_cast<enorm<ldmat>&>(posterior()); |
|---|
| 288 | } |
|---|
| 289 | |
|---|
| 290 | EKF_UDfix(){} |
|---|
| 291 | |
|---|
| 292 | |
|---|
| 293 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
|---|
| 294 | |
|---|
| 295 | //! Set nonlinear functions for mean values and covariance matrices. |
|---|
| 296 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
|---|
| 297 | |
|---|
| 298 | //! Here dt = [yt;ut] of appropriate dimensions |
|---|
| 299 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
|---|
| 300 | |
|---|
| 301 | void log_register ( bdm::logger& L, const string& prefix ){ |
|---|
| 302 | BM::log_register ( L, prefix ); |
|---|
| 303 | |
|---|
| 304 | if ( log_level[logU] ) |
|---|
| 305 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
|---|
| 306 | if ( log_level[logG] ) |
|---|
| 307 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
|---|
| 308 | |
|---|
| 309 | } |
|---|
| 310 | /*! Create object from the following structure |
|---|
| 311 | |
|---|
| 312 | \code |
|---|
| 313 | class = 'EKF_UD'; |
|---|
| 314 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 315 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
|---|
| 316 | dQ = [...]; % vector containing diagonal of Q |
|---|
| 317 | dR = [...]; % vector containing diagonal of R |
|---|
| 318 | --- optional fields --- |
|---|
| 319 | mu0 = [...]; % vector of statistics mu0 |
|---|
| 320 | dP0 = [...]; % vector containing diagonal of P0 |
|---|
| 321 | -- or -- |
|---|
| 322 | P0 = [...]; % full matrix P0 |
|---|
| 323 | --- inherited fields --- |
|---|
| 324 | bdm::BM::from_setting |
|---|
| 325 | \endcode |
|---|
| 326 | If the optional fields are not given, they will be filled as follows: |
|---|
| 327 | \code |
|---|
| 328 | mu0 = [0,0,0,....]; % empty statistics |
|---|
| 329 | P0 = eye( dim ); |
|---|
| 330 | \endcode |
|---|
| 331 | */ |
|---|
| 332 | void from_setting ( const Setting &set ); |
|---|
| 333 | |
|---|
| 334 | void validate() {}; |
|---|
| 335 | // TODO dodelat void to_setting( Setting &set ) const; |
|---|
| 336 | |
|---|
| 337 | }; |
|---|
| 338 | UIREGISTER(EKF_UDfix); |
|---|
| 339 | |
|---|
| 340 | |
|---|
| 341 | |
|---|
| 342 | |
|---|
| 343 | #endif // KF_H |
|---|
| 344 | |
|---|