1 | /*! |
---|
2 | \file |
---|
3 | \brief Bayesian Filtering for linear Gaussian models (Kalman Filter) and extensions |
---|
4 | \author Vaclav Smidl. |
---|
5 | |
---|
6 | ----------------------------------- |
---|
7 | BDM++ - C++ library for Bayesian Decision Making under Uncertaint16y |
---|
8 | |
---|
9 | Using IT++ for numerical operations |
---|
10 | ----------------------------------- |
---|
11 | */ |
---|
12 | |
---|
13 | #ifndef EKFfix_H |
---|
14 | #define EKFfix_H |
---|
15 | |
---|
16 | |
---|
17 | #include <estim/kalman.h> |
---|
18 | #include "fixed.h" |
---|
19 | #include "matrix.h" |
---|
20 | #include "matrix_vs.h" |
---|
21 | #include "reference_Q15.h" |
---|
22 | #include "parametry_motoru.h" |
---|
23 | |
---|
24 | using namespace bdm; |
---|
25 | |
---|
26 | double minQ(double Q); |
---|
27 | |
---|
28 | void mat_to_int16(const imat &M, int16 *I); |
---|
29 | void vec_to_int16(const ivec &v, int16 *I); |
---|
30 | void UDtof(const mat &U, const vec &D, imat &Uf, ivec &Df, const vec &xref); |
---|
31 | |
---|
32 | #ifdef XXX |
---|
33 | /*! |
---|
34 | \brief Extended Kalman Filter with full matrices in fixed point16 arithmetic |
---|
35 | |
---|
36 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
37 | */ |
---|
38 | class EKFfixed : public BM { |
---|
39 | public: |
---|
40 | void init_ekf(double Tv); |
---|
41 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
42 | |
---|
43 | /* Declaration of local functions */ |
---|
44 | void prediction(int16 *ux); |
---|
45 | void correction(void); |
---|
46 | void update_psi(void); |
---|
47 | |
---|
48 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
49 | int16 Q[16]; /* matrix [4,4] */ |
---|
50 | int16 R[4]; /* matrix [2,2] */ |
---|
51 | |
---|
52 | int16 x_est[4]; |
---|
53 | int16 x_pred[4]; |
---|
54 | int16 P_pred[16]; /* matrix [4,4] */ |
---|
55 | int16 P_est[16]; /* matrix [4,4] */ |
---|
56 | int16 Y_mes[2]; |
---|
57 | int16 ukalm[2]; |
---|
58 | int16 Kalm[8]; /* matrix [5,2] */ |
---|
59 | |
---|
60 | int16 PSI[16]; /* matrix [4,4] */ |
---|
61 | |
---|
62 | int16 temp15a[16]; |
---|
63 | |
---|
64 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
65 | |
---|
66 | int32 temp30a[4]; /* matrix [2,2] - temporary matrix for inversion */ |
---|
67 | enorm<fsqmat> E; |
---|
68 | mat Ry; |
---|
69 | |
---|
70 | public: |
---|
71 | //! Default constructor |
---|
72 | EKFfixed ():BM(),E(),Ry(2,2){ |
---|
73 | int16 i; |
---|
74 | for(i=0;i<16;i++){Q[i]=0;} |
---|
75 | for(i=0;i<4;i++){R[i]=0;} |
---|
76 | |
---|
77 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
78 | for(i=0;i<4;i++){x_pred[i]=0;} |
---|
79 | for(i=0;i<16;i++){P_pred[i]=0;} |
---|
80 | for(i=0;i<16;i++){P_est[i]=0;} |
---|
81 | P_est[0]=0x7FFF; |
---|
82 | P_est[5]=0x7FFF; |
---|
83 | P_est[10]=0x7FFF; |
---|
84 | P_est[15]=0x7FFF; |
---|
85 | for(i=0;i<2;i++){Y_mes[i]=0;} |
---|
86 | for(i=0;i<2;i++){ukalm[i]=0;} |
---|
87 | for(i=0;i<8;i++){Kalm[i]=0;} |
---|
88 | |
---|
89 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
90 | |
---|
91 | set_dim(4); |
---|
92 | E._mu()=zeros(4); |
---|
93 | E._R()=zeros(4,4); |
---|
94 | init_ekf(0.000125); |
---|
95 | }; |
---|
96 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
97 | void bayes ( const vec &yt, const vec &ut ); |
---|
98 | //!dummy! |
---|
99 | const epdf& posterior() const {return E;}; |
---|
100 | |
---|
101 | }; |
---|
102 | |
---|
103 | UIREGISTER(EKFfixed); |
---|
104 | |
---|
105 | #endif |
---|
106 | |
---|
107 | //! EKF for testing q44 |
---|
108 | class EKFtest: public EKF_UD{ |
---|
109 | void bayes ( const vec &yt, const vec &cond ) { |
---|
110 | EKF_UD::bayes(yt,cond); |
---|
111 | vec D = prior()._R()._D(); |
---|
112 | |
---|
113 | if (D(3)>10) D(3) = 10; |
---|
114 | |
---|
115 | prior()._R().__D()=D; |
---|
116 | } |
---|
117 | }; |
---|
118 | UIREGISTER(EKFtest); |
---|
119 | |
---|
120 | /*! |
---|
121 | \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
122 | |
---|
123 | An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
124 | */ |
---|
125 | class EKFfixedUD : public BM { |
---|
126 | public: |
---|
127 | LOG_LEVEL(EKFfixedUD,logU, logG, logD, logA, logP); |
---|
128 | |
---|
129 | void init_ekf(double Tv); |
---|
130 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
131 | |
---|
132 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
133 | int16 Q[16]; /* matrix [4,4] */ |
---|
134 | int16 R[4]; /* matrix [2,2] */ |
---|
135 | |
---|
136 | int16 x_est[4]; /* estimate and prediction */ |
---|
137 | |
---|
138 | int16 PSI[16]; /* matrix [4,4] */ |
---|
139 | int16 PSIU[16]; /* matrix PIS*U, [4,4] */ |
---|
140 | |
---|
141 | int16 Uf[16]; // upper triangular of covariance (inplace) |
---|
142 | int16 Df[4]; // diagonal covariance |
---|
143 | int16 Dfold[4]; // temp of D |
---|
144 | int16 G[16]; // temp for bierman |
---|
145 | |
---|
146 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
147 | |
---|
148 | enorm<fsqmat> E; |
---|
149 | mat Ry; |
---|
150 | |
---|
151 | public: |
---|
152 | //! Default constructor |
---|
153 | EKFfixedUD ():BM(),E(),Ry(2,2){ |
---|
154 | int16 i; |
---|
155 | for(i=0;i<16;i++){Q[i]=0;} |
---|
156 | for(i=0;i<4;i++){R[i]=0;} |
---|
157 | |
---|
158 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
159 | for(i=0;i<16;i++){Uf[i]=0;} |
---|
160 | for(i=0;i<4;i++){Df[i]=0;} |
---|
161 | for(i=0;i<16;i++){G[i]=0;} |
---|
162 | for(i=0;i<4;i++){Dfold[i]=0;} |
---|
163 | |
---|
164 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
165 | |
---|
166 | set_dim(4); |
---|
167 | dimy = 2; |
---|
168 | dimc = 2; |
---|
169 | E._mu()=zeros(4); |
---|
170 | E._R()=zeros(4,4); |
---|
171 | init_ekf(0.000125); |
---|
172 | }; |
---|
173 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
174 | void bayes ( const vec &yt, const vec &ut ); |
---|
175 | //!dummy! |
---|
176 | const epdf& posterior() const {return E;}; |
---|
177 | void log_register(logger &L, const string &prefix){ |
---|
178 | BM::log_register ( L, prefix ); |
---|
179 | |
---|
180 | L.add_vector ( log_level, logG, RV("G",16), prefix ); |
---|
181 | L.add_vector ( log_level, logU, RV ("U", 16 ), prefix ); |
---|
182 | L.add_vector ( log_level, logD, RV ("D", 4 ), prefix ); |
---|
183 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
184 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
185 | |
---|
186 | }; |
---|
187 | //void from_setting(); |
---|
188 | }; |
---|
189 | |
---|
190 | UIREGISTER(EKFfixedUD); |
---|
191 | |
---|
192 | /*! |
---|
193 | * \brief Extended Kalman Filter with UD matrices in fixed point16 arithmetic |
---|
194 | * |
---|
195 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
196 | */ |
---|
197 | class EKFfixedUD2 : public BM { |
---|
198 | public: |
---|
199 | LOG_LEVEL(EKFfixedUD2,logU, logG, logD, logA, logC, logP); |
---|
200 | |
---|
201 | void init_ekf2(double Tv); |
---|
202 | void ekf2(double ux, double uy, double isxd, double isyd); |
---|
203 | |
---|
204 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
205 | int16 Q[4]; /* matrix [4,4] */ |
---|
206 | int16 R[4]; /* matrix [2,2] */ |
---|
207 | |
---|
208 | int16 x_est[2]; /* estimate and prediction */ |
---|
209 | int16 y_est[2]; /* estimate and prediction */ |
---|
210 | int16 y_old[2]; /* estimate and prediction */ |
---|
211 | |
---|
212 | int16 PSI[4]; /* matrix [4,4] */ |
---|
213 | int16 PSIU[4]; /* matrix PIS*U, [4,4] */ |
---|
214 | int16 C[4]; /* matrix [4,4] */ |
---|
215 | |
---|
216 | int16 Uf[4]; // upper triangular of covariance (inplace) |
---|
217 | int16 Df[2]; // diagonal covariance |
---|
218 | int16 Dfold[2]; // temp of D |
---|
219 | int16 G[4]; // temp for bierman |
---|
220 | |
---|
221 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
222 | |
---|
223 | enorm<fsqmat> E; |
---|
224 | mat Ry; |
---|
225 | |
---|
226 | public: |
---|
227 | //! Default constructor |
---|
228 | EKFfixedUD2 ():BM(),E(),Ry(2,2){ |
---|
229 | int16 i; |
---|
230 | for(i=0;i<4;i++){Q[i]=0;} |
---|
231 | for(i=0;i<4;i++){R[i]=0;} |
---|
232 | |
---|
233 | for(i=0;i<2;i++){x_est[i]=0;} |
---|
234 | for(i=0;i<2;i++){y_est[i]=0;} |
---|
235 | for(i=0;i<2;i++){y_old[i]=0;} |
---|
236 | for(i=0;i<4;i++){Uf[i]=0;} |
---|
237 | for(i=0;i<2;i++){Df[i]=0;} |
---|
238 | for(i=0;i<4;i++){G[i]=0;} |
---|
239 | for(i=0;i<2;i++){Dfold[i]=0;} |
---|
240 | |
---|
241 | for(i=0;i<4;i++){PSI[i]=0;} |
---|
242 | for(i=0;i<4;i++){C[i]=0;} |
---|
243 | |
---|
244 | set_dim(2); |
---|
245 | dimc = 2; |
---|
246 | dimy = 2; |
---|
247 | E._mu()=zeros(2); |
---|
248 | E._R()=zeros(2,2); |
---|
249 | init_ekf2(0.000125); |
---|
250 | }; |
---|
251 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
252 | void bayes ( const vec &yt, const vec &ut ); |
---|
253 | //!dummy! |
---|
254 | const epdf& posterior() const {return E;}; |
---|
255 | void log_register(logger &L, const string &prefix){ |
---|
256 | BM::log_register ( L, prefix ); |
---|
257 | |
---|
258 | L.add_vector ( log_level, logG, RV("G2",4), prefix ); |
---|
259 | L.add_vector ( log_level, logU, RV ("U2", 4 ), prefix ); |
---|
260 | L.add_vector ( log_level, logD, RV ("D2", 2 ), prefix ); |
---|
261 | L.add_vector ( log_level, logA, RV ("A2", 4 ), prefix ); |
---|
262 | L.add_vector ( log_level, logC, RV ("C2", 4 ), prefix ); |
---|
263 | L.add_vector ( log_level, logP, RV ("P2", 4 ), prefix ); |
---|
264 | |
---|
265 | }; |
---|
266 | //void from_setting(); |
---|
267 | }; |
---|
268 | |
---|
269 | UIREGISTER(EKFfixedUD2); |
---|
270 | |
---|
271 | /*! |
---|
272 | * \brief Extended Kalman Filter with Chol matrices in fixed point16 arithmetic |
---|
273 | * |
---|
274 | * An approximation of the exact Bayesian filter with Gaussian noices and non-linear evolutions of their mean. |
---|
275 | */ |
---|
276 | class EKFfixedCh : public BM { |
---|
277 | public: |
---|
278 | LOG_LEVEL(EKFfixedCh,logCh, logA, logP); |
---|
279 | |
---|
280 | void init_ekf(double Tv); |
---|
281 | void ekf(double ux, double uy, double isxd, double isyd); |
---|
282 | |
---|
283 | /* Constants - definovat jako konstanty ?? ?kde je vyhodnejsi aby v pameti byli?*/ |
---|
284 | int16 Q[16]; /* matrix [4,4] */ |
---|
285 | int16 R[4]; /* matrix [2,2] */ |
---|
286 | |
---|
287 | int16 x_est[4]; /* estimate and prediction */ |
---|
288 | |
---|
289 | int16 PSI[16]; /* matrix [4,4] */ |
---|
290 | int16 PSICh[16]; /* matrix PIS*U, [4,4] */ |
---|
291 | |
---|
292 | int16 Chf[16]; // upper triangular of covariance (inplace) |
---|
293 | |
---|
294 | int16 cA, cB, cC, cG, cH; // cD, cE, cF, cI ... nepouzivane |
---|
295 | |
---|
296 | enorm<chmat> E; |
---|
297 | mat Ry; |
---|
298 | |
---|
299 | public: |
---|
300 | //! Default constructor |
---|
301 | EKFfixedCh ():BM(),E(),Ry(2,2){ |
---|
302 | int16 i; |
---|
303 | for(i=0;i<16;i++){Q[i]=0;} |
---|
304 | for(i=0;i<4;i++){R[i]=0;} |
---|
305 | |
---|
306 | for(i=0;i<4;i++){x_est[i]=0;} |
---|
307 | for(i=0;i<16;i++){Chf[i]=0;} |
---|
308 | |
---|
309 | for(i=0;i<16;i++){PSI[i]=0;} |
---|
310 | |
---|
311 | set_dim(4); |
---|
312 | E._mu()=zeros(4); |
---|
313 | E._R()=zeros(4,4); |
---|
314 | init_ekf(0.000125); |
---|
315 | }; |
---|
316 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
317 | void bayes ( const vec &yt, const vec &ut ); |
---|
318 | //!dummy! |
---|
319 | const epdf& posterior() const {return E;}; |
---|
320 | void log_register(logger &L, const string &prefix){ |
---|
321 | BM::log_register ( L, prefix ); |
---|
322 | |
---|
323 | L.add_vector ( log_level, logCh, RV ("Ch", 16 ), prefix ); |
---|
324 | L.add_vector ( log_level, logA, RV ("A", 16 ), prefix ); |
---|
325 | L.add_vector ( log_level, logP, RV ("P", 16 ), prefix ); |
---|
326 | |
---|
327 | }; |
---|
328 | //void from_setting(); |
---|
329 | }; |
---|
330 | |
---|
331 | UIREGISTER(EKFfixedCh); |
---|
332 | |
---|
333 | |
---|
334 | //! EKF for comparison of EKF_UD with its fixed-point16 implementation |
---|
335 | class EKF_UDfix : public BM { |
---|
336 | protected: |
---|
337 | //! logger |
---|
338 | LOG_LEVEL(EKF_UDfix,logU, logG); |
---|
339 | //! Internal Model f(x,u) |
---|
340 | shared_ptr<diffbifn> pfxu; |
---|
341 | |
---|
342 | //! Observation Model h(x,u) |
---|
343 | shared_ptr<diffbifn> phxu; |
---|
344 | |
---|
345 | //! U part |
---|
346 | mat U; |
---|
347 | //! D part |
---|
348 | vec D; |
---|
349 | |
---|
350 | mat A; |
---|
351 | mat C; |
---|
352 | mat Q; |
---|
353 | vec R; |
---|
354 | |
---|
355 | enorm<ldmat> est; |
---|
356 | |
---|
357 | |
---|
358 | public: |
---|
359 | |
---|
360 | //! copy constructor duplicated |
---|
361 | EKF_UDfix* _copy() const { |
---|
362 | return new EKF_UDfix(*this); |
---|
363 | } |
---|
364 | |
---|
365 | const enorm<ldmat>& posterior()const{return est;}; |
---|
366 | |
---|
367 | enorm<ldmat>& prior() { |
---|
368 | return const_cast<enorm<ldmat>&>(posterior()); |
---|
369 | } |
---|
370 | |
---|
371 | EKF_UDfix(){} |
---|
372 | |
---|
373 | |
---|
374 | EKF_UDfix(const EKF_UDfix &E0): pfxu(E0.pfxu),phxu(E0.phxu), U(E0.U), D(E0.D){} |
---|
375 | |
---|
376 | //! Set nonlinear functions for mean values and covariance matrices. |
---|
377 | void set_parameters ( const shared_ptr<diffbifn> &pfxu, const shared_ptr<diffbifn> &phxu, const mat Q0, const vec R0 ); |
---|
378 | |
---|
379 | //! Here dt = [yt;ut] of appropriate dimensions |
---|
380 | void bayes ( const vec &yt, const vec &cond = empty_vec ); |
---|
381 | |
---|
382 | void log_register ( bdm::logger& L, const string& prefix ){ |
---|
383 | BM::log_register ( L, prefix ); |
---|
384 | |
---|
385 | if ( log_level[logU] ) |
---|
386 | L.add_vector ( log_level, logU, RV ( dimension()*dimension() ), prefix ); |
---|
387 | if ( log_level[logG] ) |
---|
388 | L.add_vector ( log_level, logG, RV ( dimension()*dimension() ), prefix ); |
---|
389 | |
---|
390 | } |
---|
391 | /*! Create object from the following structure |
---|
392 | |
---|
393 | \code |
---|
394 | class = 'EKF_UD'; |
---|
395 | OM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
396 | IM = configuration of bdm::diffbifn; % any offspring of diffbifn, bdm::diffbifn::from_setting |
---|
397 | dQ = [...]; % vector containing diagonal of Q |
---|
398 | dR = [...]; % vector containing diagonal of R |
---|
399 | --- optional fields --- |
---|
400 | mu0 = [...]; % vector of statistics mu0 |
---|
401 | dP0 = [...]; % vector containing diagonal of P0 |
---|
402 | -- or -- |
---|
403 | P0 = [...]; % full matrix P0 |
---|
404 | --- inherited fields --- |
---|
405 | bdm::BM::from_setting |
---|
406 | \endcode |
---|
407 | If the optional fields are not given, they will be filled as follows: |
---|
408 | \code |
---|
409 | mu0 = [0,0,0,....]; % empty statistics |
---|
410 | P0 = eye( dim ); |
---|
411 | \endcode |
---|
412 | */ |
---|
413 | void from_setting ( const Setting &set ); |
---|
414 | |
---|
415 | void validate() {}; |
---|
416 | // TODO dodelat void to_setting( Setting &set ) const; |
---|
417 | |
---|
418 | }; |
---|
419 | UIREGISTER(EKF_UDfix); |
---|
420 | |
---|
421 | |
---|
422 | |
---|
423 | |
---|
424 | #endif // KF_H |
---|
425 | |
---|